www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


25.4.2024

Data bank of environmental properties of chemicals


Chemical
Dichloromethane
CAS-number :
75-09-2
 
Synonyms :
dikloorimetaani
methane dichloride
methylene chloride
methylene dichloride
Metyleenikloridi
 
Sumformula of the chemical :
CH2Cl2
EINECS-number :
2008389
 
Uses :
Solvent. 
Aerosol propellant, paint remover, metal degreaser and
a urethane foam blowing agent. 
(Chem Mark Report 1983).
 
Molecular weight :
84.93
 
Vapor pressure, mmHg :
434.9  25°C, Boublik et al. 1984
 
Water solubility, mg/l :
13200  20 °C, 13,2 - 20 g/l,
20000  Anon 1986b
13000  at 25°C, Riddick et al. 1986
7900  MITI 1992
 
Melting point, °C :
-95.1  Suntio et al. 1988
 
Boiling point, °C :
39.8 
40  Anon 1986b
38.5  38.5 - 40.5 MITI 1992
 
Log octanol/water coefficient, log Pow :
1.26 
1.25  Anon 1986b
1.51  Hansch & Leo 1979
1.25  Callahan et al. 1979
1.25  Hansch & Leo 1985
1.25  Sangster 1989
 
Henry's law constant, Pa x m3/mol :
272  exptl., Dilling 1977
222  exptl., Gossett 1987
250.8  calc. Yaws et al. 1991
 
Volatilization :
Relative volatility (nBuAc=1) = 27.5

Dichloromethane has a high Henry's Law coefficient and will
evaporate rapidly from water. 
Half-lives for the evaporation
from water of 3 - 5.6 hours have been determined at moderate
mixing conditions (Lyman et al. 1987, Rathbun & Tai 1981).

When dichloromethane released into an estuarine bay, all the
chemical dissipated within 4 km of the release point in the
spring and within 8 km in the winter under ice (Howard 1990).

Due to high vapor pressure of dichloromethane, it will
evaporate rapidly from near-surface soil (Howard 1990).
 
Mobility :
94.57 % (air), 5.39 % (water), 0.04 % (sediment).

log Kom 1.44 (Sabljic 1984)

log Koc 1.68 (calc.) 
(Lyman et al. 1987)

Dichloromethane is adsorbed strongly to peat moss, less
strongly to clay, only slightly to dolomite limestone and not
at all to sand (Dilling et al. 1975).
 
Photochemical degradation in air :
Since dichloromethane does not absorb light >290 nm, it will
not degrade by direct photolysis in the troposphere (Hubrich 
& Stuhl 1980).

Dichloromethane released into the atmosphere will degrade by
reaction with hydroxyl radicals with a half-life of several
months. 
A small fraction of the chemical will diffuse to the
stratosphere where it will rapidly degrade by photolysis and
reaction with chlorine radicals (Howard 1990).
 
Half-life in air, days :
19.1  19.1d - 191d,
191  based upon photooxidation half-life in air,
  Howard 1991
 
Half-life in soil, days :
7d - 4w,
28  scientific judgement based upon estimated
  unacclimated aqueous aerobic biodegradation
  half-life,
  Howard 1991
 
Half-life in water, days :
7d - 4w,
28  in surface water, scientific judgement based upon
  estimated unacclimated aqueous aerobic
  biodegradation half-life,
14  14d - 8w,
56  in ground water, scientific judgement based upon
  estimated unacclimated aqueous aerobic
  biodegradation half-life,
  Howard 1991
 
Total degradation in water :
Biodegradation:
5-26% by BOD
period: 28d
substance: 100 mg/l
sludge: 30 mg/l
(MITI 1992)
 
Other information of degradation :
Degradation of dichloromethane:
*------------------------------------------------------------*
ENVIRONMENT  INIT.CONC   REDOX-       TEMP    DEGRADATION  REF.
             mg/l        COND.        °C      %/day
*--------------------------------------------------------------*
water (adapted)   17     aerobic       30      100/0.5        a
water             17     anaerobic     30       60/0.5        a
water (deion.)     1     aerobic       25    t 1/2 = 540 d    b
water (adapted)  840     aerobic        -      100/0.75       c
water (adapted)  840     aerobic        -       80/30         c
water (abiotic)    -        -          25    t 1/2 = 700 yr   d
water (adapted)  5 - 10  aerobic       25      100/7          e
sandy soil         0.2   aerobic + natural gas t 1/2 = 0.04 d f
*--------------------------------------------------------------*
a) Brunner et al. 1980           d) Schwarzenbach 1985
b) Dilling et al. 1975           e) Tabak et al. 1981
c) Kästner 1986                  f) Anon. 1987b
(Anon. 1987b).

Dichloromethane biodegrades completely under aerobic conditions
with sewage seed or activated sludge between 6 hours to 7 days
(Howard 1990).

86 - 92 % conversion to CO2 will occur after a varying
acclimation period using anaerobic digestion in wastewater
(Gossett 1985).
 
Bioconcentration factor, fishes :
2.0 - 5.4, 6w, Cyprinus carpio, conc 0.25 mg/l
5.4 
6.4  6.4 - 40, 6w, Cyprinus carpio, conc 0.025 mg/l
40  MITI 1992
 
Other information of bioaccumulation :
Confirmed to be non-accumulative or low accumulative
(Anon. 1987).
 
LD50 values to mammals in oral exposure, mg/kg :
167  orl-rat, Lewis & Sweet 1984
3000  orl-dog, Anon 1986b
2136  orl-rat, Anon 1986b
1900  orl-rbt, Anon 1986b
 
LD50 values to mammals in non-oral exposure , mg/kg :
1500  ipr-mus, Lewis & Sweet 1984
6460  scu-mus
 
LC50 values to mammals in inhalation exposure, mg/m3 :
88000  ihl-rat, 30 min.,Lewis & Sweet 1984
43400  ihl-cat, 4.5hr
 
LC50 values to mammals in inhalation exposure, ppm :
14400  ihl-mus, 7hr, Lewis & Sweet 1984
14108  ihl-dog, 7hr
5000  ihl-gpg, 2hr
 
LDLo values to mammals in oral exposure, mg/kg :
3000  orl-dog, Lewis & Sweet 1984
1900  orl-rbt
 
LDLo values to mammals in non-oral exposure , mg/kg :
950  ipr-dog, Lewis & Sweet 1984
2700  scu-dog
200  ivn-dog
2700  scu-rbt
 
TCLo values to mammals in inhalation exposure, ppm :
500  ihl-hmn, Lewis & Sweet 1984
500  ihl-rat, 6hr
 
Maximum longterm immission concentration in air for plants,mg/m3 :
20  VDI 2306
 
Maximum longterm immission concentration in air for plants,ppm :
VDI 2306
 
Effects on microorganisms :
EC50 = 1000 mg/l, 15 min, Photobacterium phosphoreum,
EC50 = 2880 mg/l, 15 min, Photobacterium pho sphoreum
(Anon 1986b).
 
EC50 values to microorganism, mg/l :
2800  15 min Microtox, Hermens et al. 1985
 
EC50 values to algae, mg/l :
1000  24 hr, assimilationtest
662  96 hr, Selenastrum capricornutum
  chlorophyll a
662  96 hr, Selenastrum capricornutum
  cellnumber,
  Anon 1986b
 
NOEC values to algae, mg/l :
56  96hr, Selenastrum capricornutum, (chlorophyll),
  AQUIRE 1944
 
LC50 values to crustaceans, mg/l :
220  48hr, Daphnia magna, LeBlanc 1980
224  48hr, Daphnia magna, Anon 1986b
220  48hr, Daphnia magna, Anon 1986b
 
EC50 values to crustaceans, mg/l :
2100  24hr, Daphnia magna, Anon 1986b
 
NOEC values to crustaceans, mg/l :
1.3  21d, rpd, Daphnia magna, AQUIRE 1994
 
LC50 values to fishes, mg/l :
193  96hr, Pimephales promelas
 
  Alexander et al. 1978
  --
294  96hr, Poelicia reticulata
  Könemann 1979
  --
330  96hr, Cyprinodon variegatus
  Heitmuller et al. 1981
  --
220  96hr, Lepomis macrochirus
  Buccafusco et al. 1981
  --
502  4d, Pimephales promelas
471  8d, Pimephales promelas
  Dill et al. 1987
  --
528  48hr, 528/521 mg/l,
521  Leuciscus idus melanotus
193  96hr, Pimephalis promelas
310  96hr, static, Pimephalis promelas
224  96hr, Lepomis macrochirus
220  96hr, Lepomis macrochirus
  Anon 1986b
  --
331  48hr, Oryzias latipes, MITI 1992
  --
330  96 hr, Pimephales promelas, Geiger et al. 1986
 
EC50 values to fishes, mg/l :
99  96hr, bhv, Pimephales promelas
  Alecander et al. 1978
  --
330  96 hr, mbt, Pimephales promelas, Geiger et at. 1986
 
NOEC values to fishes, mg/l :
130  96hr, (morality), Cyprinodon variegatus,
  AQUIRE 1994
 
Effects on physiology of water organisms :
Pimephales promelas, 82.5 mg/l, 28 d, measurable change in
length and/or weight (Dill et al. 1987).
 
Other information of water organisms :
50 % pht inhibition = 1480 mg/l, Chlamydomonas angulosa,
50 % pht inhibition = 2300 mg/l, Chlorella vulgaris,
EC5 = > 8000 mg/l, 48hr, pH 6,9, Chilomonas paramaecium,
EC5 = > 8000 mg/l, 72hr, pH 7, Entosiphon sulcatum
EC5 = > 16000 mg/l, 20hr, pH 7, Uronema parduczi
(Anon 1986b).

References
2358Anon 1986b. Beitrag zur Beurteilung von 19 gefährlichen Stoffen in oberirdischen Gewässern. Texte 10. Umweltbundesamt. pp. 163.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
2333Anon. 1987b. Nedbrydelighed af miljøfremmede organiske stoffer. Utredningsrapport U1. Lossepladsprojektet.
3107AQUIRE 1993 -. Aquatic Toxity Information Retrieval Database. U.S.Environmental Protection Agency, Office of Pesticides and Toxic Substances, Washington, D.C.
2367Brunner, W. et al. 1980. Bacterial degradation of dichlormethane. Applied and Environmental Microbiology 40 (5): 950 - 958.
207Buccafusco, R.J., Ells, S.J. & LeBlanc, G.A. 1981. Acute toxicity of priority pollutants to bluegill (Lepomis macrochirus). Bull. Environ. Contam. Toxicol. 26: 446 - 452.
2609Callahan, M. A., Slimak, M. W., Gabel N. W:, May, I. P., Fowler, C. F., Freed, J. R.,Jennings, P., Durfee, R. L., Whitmore, F. C., Maestri, B., Mabey, M. R., Holt, B. R. and Gould, C. 1979. Waterrelated environmental fate of 129 priority pollutants. Vol II. Halogenated aliphatic hydrocarbons, halogenated ethers, monocyclic aromatics, phthalate esters, polycyclic aromatic hydrocarbons, nitrosamines and miscellenious compounds. EPA - 440/4 - 79 -029b.
2042Dill, D.C. et al. 1987. Toxicity of methylene chloride to life stages of the fathead minnow, Pimephales promelas Rafinesque. Bull. Environ. Contam. Toxicol. 39: 869.
2088Dilling, W.L. 1977. Interphase transfer processes: evaporation rates of chloromethanes, -ethanes, - ethylenes, -propanes and -propylenes from dilute aqueous solutions. Comparisons with theoretical predictions. Environm. Sci. & Techn. 11(4).
2094Dilling, W.L., Tefertiller, N.B. & Kallos, G.J. 1975. Evaporation rates and reactivities of methylene chloride, chloroform, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other chlorinated compounds in dilute aqueous solutions. Environm. Sci. and Techn. 9 (9): 833 - 837.
3294Geiger, D. L. et al. 1986. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas) Vol. 3. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, Wisconsin, U.S.A., 328.
2660Gossett, J. M. 1987. Environ. Sci. Technol. 21: 202 - 208.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
2622Hansch, C. & Leo, A. 1979. Substituent Constant for Correlation Analysis in Chemistry and Biology. Wiley: New York.
564Heitmuller, P.T., Hollister, T.A. & Parrish, P.R. 1981. Acute toxicity of 54 industrial chemicals to sheepshead minnows (Cyprinodon variegatus). Bull. Environm. Contam. Toxicol. 27: 596 - 604.
2414Hermens, J. et al. 1985c. Quantitative structure activity relationships and mixture of toxicity studies of organic chemicals in Photobacterium phosphoreum: Microtox test. Ecotox. Environ. Safety 9: 17.
37Hodson, P.V. 1985. Comparison of acute toxicity in fish, rats and mice. Journal of applied toxicology 5(4): 220 - 226.
2992Howard, P. H. et al. 1990. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. II: Solvents. Lewis Publishers, Inc. Chelsea. pp 546.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
2997Hubrich, C. and Stuhl, F. 1980. J. Photochem. 12: 93 - 107.
2369Kästner, M. 1986. Biologische Elimination von leichtfluchtigen Halogenkohlenwasserstoffen (Theoretische Glundlagen und Laborversuche). Fachseminar - Bodensanierung und Grundwasserreinigung - Wiedernutzung von Altstandorten. 24-25/9 1986 in Braunsweig: 155 - 166.
761Könemann, W.H. 1979. Quantitative structure-activity relationships for kinetics and toxicity of aquatic pollutants and their mixtures in fish. Univ. Utrecht, Netherlands.
798LeBlanc, G.A. 1980. Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull. Environm. Contam. Toxicol. 24: 684 - 691.
1589Lewis, R.J. & Sweet, D.V. 1984. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 83-107-4.
2960Lyman, W. J. et al. 1982. Handbook of Chemical Property Estimation Methods. Environmental behavior of organic compounds. McGraw-Hill New York.
3105MITI 1992. Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Compild under the Safety Division Basic Industries Bureau Ministry of International Trade & Industry, Japan. Edited by Chemicals Inspection & Testing Institute, Japan.
1973Pilli.A., Carle, D.O., Kline. E., Pickering. Q. & Lazorchak. J. 1988. Effets of pollution on freshwater organisms. JWPCF 60(6): 994 - 1065.
2998Rathbun, R. E. or D. Y. 1981. Water Res. 15: 243 - 250.
2971Riddick, J. A. et al. 1986. Organic solvents: Physical Properties and Methods of Purification, 4th Edit. New York: J. Wiley & Sons.
2999Sabljic, A. 1984. J. Agric. Food Chem. 32: 243 - 246.
3104Sangster, J. 1989. Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data, Vol 18, No. 3: 1111 - 1229.
2368Schwarzenbach, R.P. 1985. Behaviour and fate of halogenated hydrocarbons in groundwater. In: Ground water quality. ed.: C.H. Ward, W. Giger & P.L. McCarty, Wiley-Interscience Publications, Kap. 24: 446 - 471.
2602Suntio, L. R., Shiu, W. Y. and Mackay, D. 1988. A review of the nature and properties of chemicals present in pulp mill effluents. Chemosphere 17(7): 1249 - 1290.
2335Tabak, H.H., Quave, S.A., Mashni, C.I. & Barth, E.F. 1981. Biodegradability studies with organic priority pollutant compounds. Journal WPCF. 53: 1503 - 1518.
1599VDI 2306. VDI-Kommission Reinhaltung der Luft. Maximale Immissions-Konzentrationen (MIK). Organische Verbildungen.
2413Walker, J. D. 1987. Effects of chemicals on microorganisms. Journal WPCF 59 (6): 614 - 625.
3030Yaws, C., Yang, H-C. & Pan, X. 1991. Henry's law constants for 362 organic compounds in water. Chemical Engineering. November. p 179 - 185.

 
 
© Copyright Environmental Administration