www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


26.4.2024

Data bank of environmental properties of chemicals


Chemical
Methanol
CAS-number :
67-56-1
 
Synonyms :
Metanoli
methyl alcohol
 
Sumformula of the chemical :
CH4O
EINECS-number :
2006596
 
Uses :
Solvent.
 
Odor :
Quality: sour, sharp
Hedonic tone: neutral
Threshold odour concentration
absolute: 4.26 ppm
50 % recognition: 53.3 ppm
100 % recognition: 53.3 ppm
Odour index 100 % recognition: 2 393
(Hellman & Small 1974)
 
Molecular weight :
32.04
 
Vapor pressure, mmHg :
92  at 20°C, Weber et al. 1981
 
Water solubility, mg/l :
  Infinite
36310  Leahy 1986
 
Melting point, °C :
-93.9 
-97.8  Suntio et al. 1988
 
Boiling point, °C :
64.7  at 760 mmHg
 
Log octanol/water coefficient, log Pow :
-0.7  Leahy 1986
-0.77  Hansch & Leo 1985
-0.74  Sangster 1989
 
Henry's law constant, Pa x m3/mol :
11.03  calc., Suntio et al. 1988
13.68  Snider & Dawson 1985
 
Volatilization :
Relative volatility (nBuAc=1) = 5.90

The value of Henry's law constant indicates that volatilization
from environmental waters may be significant (Lyman et al. 1982)

The volatilization half-life from a model river has been
estimated to be 5.3 hr (Lyman et al. 1982).

The volatilization half-life from an environmental pond has
been estimated to be 2.6 days (USEPA 1987).
 
Mobility :
Methanol is miscibility in water and low octanol/water
partition coefficient suggest high mobility in soil
(Howard 1990).
 
Other physicochemical properties :
Miscible. 
(Merck Index 1983)
 
Photochemical degradation in air :
Methanol is expected to exist almost entirely in the vapor
phase in the ambient atmosphere, based on its vapor pressure.

It is degraded by reaction with photochemically produced
hydroxyl radicals with estimated half-life 17.8 days in a
typical ambient atmosphere. 
Atmospheric methanol can also react
with nitrogen dioxide in polluted air to yield methyl nitrite
(Howard 1990).

Photooxidation half-life in air:
71hr - 713hr,
based uponmeasured rate data for the vapor phase reaction with
hydroxyl radicals in air (Howard 1991).
 
Photochemical degradation in soil :
Sediment an clay suspensions solution did not photocatalyze the
degradation of methanol in aqueous solution during irradiation
with UV light (Oliver et al. 1979).
 
Photochemical degradation in water :
Methanol in aqueous solution exhibited no degradation when
exposed to sunlight using an EPA test protocol (Hustert et al. 
1981).

Photooxidation half-life in water:
46.6d - 5.1yr,
based upon measured rate data for hydroxyl radicals in aqueous
solution (Howard 1991)
 
Half-life in air, days :
71hr - 713hr,
29.7  based upon photooxidation half-life in air,
  Howard 1991
 
Half-life in soil, days :
24hr - 168hr,
scientific judgement based upon unacclimated
  grab sample of aerobic soil/water suspensions
  from ground water aquifers,
  Howard 1991
 
Half-life in water, days :
24hr - 168hr,
in surface water, scientific judgement based
  upon estimated aqueous aerobic biodegradation
  half-life,
24hr - 168hr,
in ground water, scientific judgement based
  upon unacclimated grab sample of aerobic soil/water
  suspensions from ground water aquifers,
  Howard 1991
 
Aerobic degradation in water :
Aerobic half-life:
24hr - 168hr,
scientific judgement based upon unacclimated grab sample of
aerobic soil/water suspensions from ground water aquifers
(Howard 1991).
 
Anaerobic degradation in water :
24hr - 120hr,
scientific judgement based upon unacclimated grab sample of
anaerobic marine water/sediment and soil/water suspensions
(Howard 1991).
 
Total degradation in soil :
Methanol is expected to be significantly biodegradable in soil
based on the results of a large number of biological screening
studies, which include soil microcosm studies. 
(Howard
1990).
 
Other information of degradation :
Standard dilution BOD water, 5-day 48% BODT, sewage inocula
(Dore et al. 1975)

Standard dilution BOD water, 5-day 76% BODT, 20day 97% BODT,
sewage inocula (Price et al. 1974).

Respirometric dilution, 5-day 82.9% BODT, sewage inocula
(Wagner 1976).

Anaerobic-water, 75-80% degradation, sewage inocula (Bekes et
al. 1975).

Biological treatment simulation, 80% degradation, adapted
activated sludge (Swain 1978).

Standard dilution, 5-day 88.7% BODT; seawater dilution, 5-day
70.7% BODT (Takemoto et al. 1981).

Soil-sediment suspensions, aerobic conditions, 5-day CO2
evolution (14-C) of 53.4%; soil-sediment suspensions, anaerobic
conditions, 5-day CO2 evolution (14-C) of 46.3% (Scheunert et 
al. 1987).
 
Other information of bioaccumulation :
The BCF of methanol experimentally measured in fish (golden
ide) was less than 10 (Freitag et al. 1985).

Based on the octanol/water partition coefficient, the BCH value
for methanol can be estimated to be 0.2 from a recommended
regression-derived equation (Lyman et al. 1982).
 
LD50 values to mammals in oral exposure, mg/kg :
13000  orl-rat
 
Maximum longterm immission concentration in air for plants,mg/m3 :
15  VDI 2306
 
Maximum longterm immission concentration in air for plants,ppm :
10  VDI 2306
 
Effects on microorganisms :
Toxicity threshold (cell multiplication inhibition test):
bacteria (Pseudomonas putida): 6600 mg/l
(Bringmann & Kühn 1980a)
 
Effects on wastewater treatment :
Removal/secondary treatment:
86%-99%, based upon % degraded under acclimated aerobic
semi-continuous flow conditions (Howard 1991).
 
EC50 values to microorganism, mg/l :
42000  15 min Microtox, Hermens et al. 1985
158000  Microtox, Green et al. 1985
90147  Biodegradation inhibition, Vaishnav 1986
 
LOEC values to algae, mg/l :
530  rpd, schr, Microcystis aeruginosa
  Bringmann & Kühn 1976
 
LC50 values to crustaceans, mg/l :
12000  96hr, 21 °C, Nitocra spinipes
  Linden et al. 1979
 
LC50 values to fishes, mg/l :
8000  48hr, Salmo trutta, Price et al. 1974
  --
28100  96hr, Pimephales promelas
  Veith et al. 1983
  --
28000  >28000, 96hr, 10 °C, Alburnus alburnus
  Linden et al. 1979
  --
29400  96 hr, Pimephales promelas, Brooke et al. 1984
 
EC50 values to fishes, mg/l :
28900  96 hr, bhv, Pimephales promelas, Brooke et al. 1984
 
Other information of water organisms :
Toxicity threshold (cell multiplication inhibition test):
green algae (Scenedesmus quadricauda): 8000 mg/l
protozoa (Entosiphon sulcatum): >10000 mg/l
(Bringmann & Kühn 1980a)

References
3016Bekes, J. et al. 1975. Prog. Hung. 15th Annu. Meet. Biochem. p. 27 - 28.
187Bringmann, G. & Kühn, R. 1976. Vergleichende Befunde der Schadwirkung wassergefährdender Stoffe gegen Bakterien (Pseudomonas putida) und Blaualgen (Microcystis aeruginosa). Gwf-Wasser-Abwasser 117(9).
188Bringmann, G. & Kühn, R. 1980a. Comparison of the toxicity thresholds of water pollutants to bacteria, algae and protozoa in the cell multiplication inhibition test. Water Res. 14: 231 - 241.
3295Brooke, L. T. et al. 1984. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas); Vol 1. Center for Lake Superior Environmental Studies University of Wisconsin-Superior, Superior, Wisconsin, U.S.A.
3005Freitag, D. et al. 1985. Chesmosphere 14: 1589 - 1616.
2415Green, J. C. et al. 1985. A comparison of three microbial assay procedures for measuring toxicity of chemical residues. Arch. Environ. Contam. Toxical. 14: 659.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
1673Hellman, T.M. & Small, F.H. 1974. Characterization of the odour properties of 101 petrochemicals using sensory methods. J. Air Pollut. Control Assoc. 24: 979 - 982.
2414Hermens, J. et al. 1985c. Quantitative structure activity relationships and mixture of toxicity studies of organic chemicals in Photobacterium phosphoreum: Microtox test. Ecotox. Environ. Safety 9: 17.
2992Howard, P. H. et al. 1990. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. II: Solvents. Lewis Publishers, Inc. Chelsea. pp 546.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
2979Hustert K. et al. 1981. Chemosphere 10: 995 - 998.
3004Kaplan, D. L. et al. 1982. Environ. Sci Technol 16: 723 - 725.
2629Leahy, D. L. 1986. J. Pharm. Sci. 75: 629 - 636.
831Linden, E., Bengtsson, B-E., Svanberg, O. & Sundström, G. 1979. The acute toxicity of 78 chemicals and pesticide formulations against two brackish water organisms, the bleak (Alburnus alburnus) and the harpacticoid Nitocra spinipes. Chemosphere 11/12: 843 - 851.
2960Lyman, W. J. et al. 1982. Handbook of Chemical Property Estimation Methods. Environmental behavior of organic compounds. McGraw-Hill New York.
3006Merck Index. 1983. An Encyclopedia of Chemicals, Drugs and Biologicals 10th ed. p 853.
3007Oliver, B. G. et al. 1979. Environ. Sci Technol. 13: 1075 - 1077.
1667Price, K.S. Waggy, G.T. & Conway, R.A. 1974. Brine shrimp bioassay and seawater BOD of petrochemicals. J. Water Pollut. Control. Fed. 46(1): 63 - 77.
3104Sangster, J. 1989. Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data, Vol 18, No. 3: 1111 - 1229.
3008Scheunert, I. et al. 1987. Chemosphere 16: 1031 - 1041.
2972Snider, J. R. and Dawson, G. A. 1985. J. Geophys. Res. D. Atmos. 90: 3797 - 3805.
2602Suntio, L. R., Shiu, W. Y. and Mackay, D. 1988. A review of the nature and properties of chemicals present in pulp mill effluents. Chemosphere 17(7): 1249 - 1290.
3015Swain, H. M. & Somerville, H. J. 1978. J. Appl. Bacteriol. 45: 147 - 151.
2967Takemoto, S. et al. 1981. Suishitsu Okadu Kenkyu 4: 80 - 90.
3010USEPA 1987. EXAMS II Computer Simulation.
2416Vaishnav, D. D. 1986. Chemical structure-biodegradation inhibition and fish acute toxicity relationships for narcotic industri chemicals. Toxicity Assessment 1: 227.
1599VDI 2306. VDI-Kommission Reinhaltung der Luft. Maximale Immissions-Konzentrationen (MIK). Organische Verbildungen.
1456Veith, G.D. et al. 1983. Estimating the acute toxicity of narcotic industrial chemicals to fathead minnows. In: Aquatic toxicology and hazard assessment: sixth symposium. ASTM STP 803. Bishop, W.E. et al. (eds.). Am. Soc. Test. Mater, Philadelphia, Pa, 90.
3011Wagner, R. 1976. Vom Wasser 47: 241 - 265.
2413Walker, J. D. 1987. Effects of chemicals on microorganisms. Journal WPCF 59 (6): 614 - 625.
3012Weber, R. C. et al. 1981. Vabor Pressure Distribution of Selected Organic Chemicals. USEPA-600/2-81-021 p 24.

 
 
© Copyright Environmental Administration