www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


29.3.2024

Data bank of environmental properties of chemicals


Chemical
Carbaryl
CAS-number :
63-25-2
 
Synonyms :
1-naftyyli-N-metyylikarbamaatti
1-naphthyl methyl carbamate
1-naphthyl-N-methylcarbamate
carbamine
dicarbam
hexavin
Karbaryyli
methylcarbamate 1-naphthol
methylcarbamic acid, 1-naphthyl ester
N-methyl-alpha-naphthylcarbamate
N-methyl-alpha-naphthylurethan
sevin
tricarnam
 
Sumformula of the chemical :
C12H11NO2
EINECS-number :
2005550
 
Uses :
Insecticide, pesticide.
 
State and appearance :
White crystalline solid.
 
Molecular weight :
201.24
 
Spesicif gravity (water=1) :
1.232  at 20 °C
 
Vapor pressure, mmHg :
0.005  < 0.005 mm, 26 °C
 
Water solubility, mg/l :
100  MITI 1992
 
Melting point, °C :
142 
142  MITI 1992
 
Photochemical degradation in air :
Atmospheric photolysis half-life: 
52hr - 200hr,
scientific judgement based upon aqueous photolysis data
(Howard 1991).

Photooxidation half-life in air:
4.5min - 7.4hr, 
scientific judgement based upon an estimated rate constant for 
the vapor phase reaction with hydroxyl radicals in air
(Howard 1991)
 
Photochemical degradation in water :
direct photolysis
pH         half-life, days
5              6.6
7              6.6
9               -              (Verschueren 1983).
--
Aquatic photolysis half-life:
52 hr - 200hr, based upon reported photolysis half-life for 
summer and winter sunlight at 40°N (Howard 1991).
 
Hydrolysis in water :
hydrolysis
pH        half-life, days
5            1500
7              15
9               0.15
Calculation based on neutral and alkaline hydrolysis assuming
pseudo-first-order kinetics (Verschueren 1983).

First-order hydrolysis half-life:
13d, scientific judgement based upon base rate constant (3.61 x 
10M-1min-1) at pH 7 and 25°C (Howard 1991)

First-order hydrolysis half-life:
3.6yr, scientific judgement based upon base rate constant 
(3.61 x 10M-1min-1) at pH 5 and 25°C (Howard 1991).
 
Hydrolysis in base :
Base rate costant 3.61 x 100M-1min-1,
(t1/2=3.2hours) Based upon rate constant at pH 9 and 27°C
(Howard 1991)
 
Half-life in air, days :
0.003  4.5min - 7.4hr,
0.31  scientific judgement based upon estimated
  photooxidation half-life in air,
  Howard 1991
 
Half-life in soil, days :
22  Li et al. 1990
  --
0.13  3.2hr - 720hr,
30  scientific judgement based upon aqueous hydrolysis
  half-life for pH 9 and 28°C and unacclimated
  aerobic biodegradation half-life,
  Howard 1991
 
Half-life in water, days :
0.13  3.2hr - 200hr,
8.33  in surface water, scientific judgement based upon
  aqueous hydrolysis half-life for pH 9 and 28°C
  and photolysis half-life for winter sunlight
  at 40°C N,
0.13  3.2hr - 1440hr,
60  in ground water, scientific judgement base upon
  aqueous hydrolysis half-life for pH 9 and 28°C
  and unacclimated aerobic biodegradation half-life,
  (Howard 1991)
 
Aerobic degradation in soil :
Biolysis by bacteria: half-life: > 30000 days (minimum value 
assuming a bacterial population of 0.1 mg/l 
(Wolfe et al. 1978).
 
Aerobic degradation in water :
Aerobic half-life:
1.7d - 30d, scientific judgement based upon unacclimated 
aerobic river die-away test data and freshwater grab sample  
data (Howard 1991).
 
Anaerobic degradation in water :
Anaerobic half-life:
6.7d - 120d, scientific judgement based upon unacclimated 
aerobic biodegradation half-life (Howard 1991).
 
Total degradation in water :
Persistence in river water in a sealed glass jar under sunlight
and artificial fluorescent light - initial concentration 
0.010 mg/l
               % of original compound found
after      1 hr      1 wk    2 wk    4 wk    8 wk
           90         5       0       0       0
(Eichelberger & Lichtenberg 1971).

Biodegradation:
8* - 65% by BOD (* 1-Naphtol was observed)
period: 28d
substance: 30 mg/l
sludge: 100 mg/l
(MITI 1992)
 
Ready biodegradability :
Confirmed to be biodegradable (Anon. 1987).
 
Other information of degradation :
Biolysis by bacteria: half-life > 30000 days, Verschueren 1983
 
Bioconcentration factor, fishes :
140  Ictalurus, Verschueren 1983
 
Other information of bioaccumulation :
Bioconcentration factor (crustaceans):
260 (Verschueren 1983).

Bioconcentration factor (algae):
4000 (Verschueren 1983).

Bioconcentration factor (other):
300, snails 
3600, Lemna sp.
(Verschueren 1983)
 
LD50 values to mammals in oral exposure, mg/kg :
250  orl-rat, Lewis & Sweet 1984
  --
500  orl-rat, female, Anon 1976
850  orl-rat, male
  --
150  orl-cat
250  orl-gpg
212  orl-mus
710  orl-rbt
  Sweet 1987
 
LD50 values to mammals in non-oral exposure , mg/kg :
4000  skn-rat, Lewis & Sweet 1984
2000  skn-rbt, - " -
  --
640  ipr-ham
25  ipr-mus
41.9  ivn-rat
6717  scu-mus
1400  scu-rat
2000  skn-rbt
  Sweet 1987
 
TDLo values to mammals in oral exposure, mg/kg :
375  orl-dog, 3-62d preg.
  specigic developmental abnormalities
394  orl-dog, 1-63d preg.
  specigic developmental abnormalities
197  orl-dog, 1-63d preg.
  effects on fertility
250  orl-ham, effects on embryo of fetus
912  orl-pig, 1-16w preg., eff. on fertility
1370  orl-rat, paternal effects
5475  orl-rat, maternal effects
5640  orl-rat, tumorigenic
  Sweet 1987
 
TDLo values to mammals in non-oral exposure , mg/kg :
900  6 - 15d, preg., scu-mus
  specific developmental abnormalities
4176  6 - 14d, preg., scu-mus
  effects on embryo of fetus
80  implant-rat, tumorigenic
  Sweet 1987
 
Other information of mammals :
Dietary feeding; rats fed for 2 years on a diet containing 200 
ppm suffered no ill effects 
(Martin 1968).
 
Carcinogenicity :
Carcinogenicity: negative 
(McCann et al. 1975).
 
Mutagenicity :
Mutagenicity in the Salmonella test: negative;
< 0.008 revertant colonies/nmol
< 70 revertant colonies at 2.0 mg/plate
(McCann et al. 1975).
 
LD50 values to birds in oral exposure, mg/kg :
56  orl-bwd, Lewis & Sweet 1984
  --
56.2  56.2 - 150, orl-Agelaius phoeniceus
150 
100  =,>100, orl-Passer domesticus
  Schafer et al. 1983
 
Effects on amphibia :
LC50 (96hr), 55.34 ppm, tadpoles of Rana hexadactyla 
(Khangarot et al. 1985).
 
Effects on invertebrates :
Invertebrates; 50 days, 1 mg/l, abundance effect (number of 
organisms in the same species changes) 
(Hanazoto & Yasuno 1987).
 
Effects on bees :
Bees: 48 hr, LC50: 3.8 - 4.5 ppm in food 
(Winterlin & Walker 1973).
 
Effects on anthropods :
LC50 (96hr), 0.624 mg/l, Ranatra elongata 
(Shukla et al. 1982).

NOEC (96hr), 0.0048 mg/l, Pteronarcys californica
NOEC (96hr), 0.0017 mg/l, Pteronarcella badia
NOEC (96hr), 0.0056 mg/l, Claassenia sabulosa
(Sanders & Cope 1968).

LC50 (30 days), 0.0022 mg/l; NOEC (30 days), 0.0013 mg/l;
Acroneuria lycorias 
(Verschueren 1983).

LC50 (30 days), 0.023 mg/l; NOEC (30 days), 0.0115 mg/l;
Pteronarcys dorsata 
(Verschueren 1983).

LC50 (30 days), 0.0027 mg/l; NOEC (30 days), 0.0018 mg/l;
Hydropsyche bettoni 
(Verschueren 1983).

Insect larvae: Chaoborus: 48 hr, LC50: 0.296 ppm
n: 48 hr, LC50: 0.48 ppm
(Verschueren 1983).

Fourth instar larval Chironomus riparius: 24 hr, LC50: 104.5
ppb 
(Estenik & Collins 1979).

Rice-field spider (Oedothorax insecticeps): LD50: 840 ppm
(Ishikura 1972).
 
Effects on microorganisms :
Bacteria: Pseudomonas putida; inhibition of cell multiplication 
starts at > 50 mg/l 
(Bringmann & Kühn 1976).
 
LOEC values to algae, mg/l :
0.03  Microcystis aeruginosa, Bringmann &
  Kühn 1976
 
LC50 values to crustaceans, mg/l :
0.00064  act, Daphnia pulex, Kenaga 1979
  --
0.006  48 hr, Daphnia pulex, Shapiro 1979
  --
0.0326  96hr, Macrobrachium lamarrei
  Shukla & Omkar 1984
  --
0.019  96hr, Macrobrachium lamarrei
  Omkar & Shukla 1985
  --
0.029  96hr, Gammarus pulex
  Bluzat & Seuge 1979
  --
0.007  96hr, Palaemon macrodactylus
  Verschueren 1983
  --
0.74  act, Daphnia pulex, Frear & Boyd 1967
  --
0.05  act, Daphnia pulex
  Hashimoto & Nishiuchi 1981
  --
0.00085  act, Daphnia pulex
  Nishiuchi & Hashimoto 1967
  --
24hr,Daphnia magna,Bogacka & Groba 1980
48hr,Daphnia magna
  --
4d, Procambarus clarkii
  Andreu-Moliner et al. 1986
  --
2.87  96hr, Orconectes nais
  Phipps & Holcombe 1985
 
EC50 values to crustaceans, mg/l :
0.006  48hr, Daphnia pulex, Shapiro 1979
 
NOEC values to crustaceans, mg/l :
0.016  96hr, Gammarus lacustris, Sanders 1969
0.026  96hr, Gammarus fasciatus
  --
0.0056  96hr, Palaemonetes kanadiakensis
0.0086  96hr, Orconectes nais
0.24  96hr, Asellus brevicaudus
0.0076  48hr, Simocephalus serrulatus
  Sanders 1972
  --
0.0064  48hr, Daphnia pulex,Sanders & Cope 1966
0.005  63 days, Daphnia magna
  --
0.008  chr, Daphnia, Biesinger 1973
 
LC50 values to fishes, mg/l :
0.86  96 hr, Salmo gairdneri, Phipps &
  Holcombe 1985
  --
0.76  96hr, Oncorhynchus kisutch
6.8  96hr, Lepomis macrochirus
13.2  96hr, Carassius auratus
7.5  96hr, Cyprinus carpio
4.3  96hr, Salmo gairdneri
96hr, Salmo trutta m. lacustris
0.75  96hr, Perca fluviatilis
  Macek & McAllister 1970
  --
3.4  24hr, Lepomis macrochirus,Edwards 1977
3.5  96hr, Salmo gairdneri
  --
13  48hr, Cyprinus carpio
10  > 10, 48hr, Carassius auratus
  Hashimoto & Nishiuchi 1981
  --
4.7  96hr, Lebistes reticulatus
  Bogacka & Groba 1980
  --
0.76  sfd, 96hr, Morone saxatilis, juv.
2.3  1 %. salt water, 96hr, Morone
  saxatilis,juv.
  Palawski et al. 1985
  --
11.2  act, Lepomis macrochirus, Kenaga 1979
4.34  act, Salmo gairdneri
14.6  act, Pimephales promelas
  --
180 days, Channa punctatus
  Saxena & Garg 1978
  --
40  24hr, Gambusia affinis
31.8  96hr, Gambusia affinis
  Chaiyarach et al. 1975
  --
13.51  24hr, Cyprinus carpio
10.36  96hr, Cyprinus carpio
  Bhattacharya et al. 1975
  --
2.83  4d, Salmo gairdneri
  McKim et al. 1987
  --
3.7  96hr, Barbus ticto ticto
2.4  48hr, Rasbora heteromorpha
  Kemp et al. 1973
  --
5.01  96hr, Pimephales promelas
0.86  96hr, Salmo Gairdneri
16.7  96hr, Carassius auratus
12.4  96hr, Ictalurus punctatus
6.97  96hr, Lepomis macrochirus
  Phipps & Holcombe 1985
 
LOEC values to fishes, mg/l :
0.068  Pimephales promelas, Carlson 1972
 
NOEC values to fishes, mg/l :
0.21  srv, rpd, chr, Pimephales promelas
0.3  chr, Pimephales promelas
  Carlson 1972
  --
96hr, Pimephales promelas
0.21  6 months, Pimephales promelas
0.68  6 months, srv, rpd, Pimephales promelas
  Verschueren 1983
  --
6.76  96hr, Lepomis macrochirus
11.2  96hr, Lepomis microlophus
6.4  96hr, Micropterus salmoides
4.34  96hr, Salmo gairdneri
1.95  96hr, Salmo trutta
0.764  96hr, Oncorhynchus kisutch
0.745  96hr, Perca flavescens
15.8  96hr, Ictalurus punctatus
20  96hr, Ictalurus melas
  Macek & McAllister 1970
 
Other information of water organisms :
Algae: Microcystis aeruginosa: inhibition of cell multiplication
starts at 0.03 mg/l (Bringmann & Kühn 1976).

Crustacean:
Cancer magister (Ducgeness crab):
6 ppb   (egg/prezoeal) Prevention of hatching and molting (96hr)
10 ppb  (zoea)         Prevention of hatching and molting (96hr)
280 ppb (juvenile)     Death or paralysis (96 hr)
180 ppb (adult)        Death or paralysis (96 hr)
(Verschueren 1983).

Molluscs:
Crassostrea gigas (Pacific oyster):
2200 ppb; 48hr, larvae; EC50 prevention of development to
straight linge shell stage (Verschueren 1983).

Mytilus edulis (bay mussel):
2300 ppb; 96hr, larvae; EC50 prevention of development to
straight linge shell stage (Verschueren 1983).

Salmo gairdneri; lethal threshold concentration (LT50): 5.167
mg/l; 0.57 days (McKim et al. 1987).

LC50, >27.0 mg/l, 96hr, snail, Phipps & Holcombe 1985.

References
1952Andreu-Moliner, E.S. et al. 1986. Toxicity of some ricefield pesticides to the crayfish P. clarkii, under laboratory and field conditions in Lake Albufera (Spain). J. Environ. Sci. Health: B21: 529.
63Anon. 1976. Pesticide Dictionary 1976. Farm Chemicals, Meister Publishing Company, 37841 Euclid Avenue, Willoughby, Ohio 44094.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
1898Bhattacharya, S. et al. 1975. Toxic effects of endrin on hepatopancreas of the teleost fish, Clarias batrachus (Linn.). Indian J. Exp. Biol. 13: 185.
170Bluzat, R. & Seuge, J. 1979. Effects de trois insecticides (lindane, fenthion et carbyryl): Toxicite aigue sur quatre especes d'invertebres limniques; toxicite chronique chez le mollusque pulmone Lymnea. Environm. Pollut. 18: 51 - 70.
172Bogacka, T. & Groba, J. 1980. Toksycznosc i biodegradacja chlorfenwinfosu, karbarylu oraz propoksuru w srodowisku wodnym. Bromatol. Chem. Toksykol. 13(2): 151- 158.
177Brafield, A.E. & Matthiessen, P. 1976. Oxygen consumption by sticklebacks (Gasterosteus aculeatus L.) exposed to zinc. J. Fish. Biol. 9: 359 - 370.
187Bringmann, G. & Kühn, R. 1976. Vergleichende Befunde der Schadwirkung wassergefährdender Stoffe gegen Bakterien (Pseudomonas putida) und Blaualgen (Microcystis aeruginosa). Gwf-Wasser-Abwasser 117(9).
252Carlson, A.R. 1972. Effects of long-term exposure of carbaryl (Sevin) on survival, growth and reproduction of the fathead minnow. J. Fish. Res. Board Can. 29: 583 - 587.
257Chaiyarach, S., Ratananun, V. & Harrel, R.C.1975. Acute toxicity of the insecticides toxaphene and carbaryl and the herbicides propanil and molinate to four species of aquatic organisms. Bull. Environ. Contam. Toxicol. 14(3): 281 - 284.
377Edwards, C.A. 1977. Nature and origins of pollution of aquatic systems by pesticides. In: Pesticides in Aquatic Environments. M.A. Q. Khan, (ed.) Plenum Press, N.Y.
379Eichelberger, J.W. & Lichtenberg, J.J. 1971. Persistence of pesticides in river water. Environm. Sci. & Techn. 5(6): 541 - 544.
420Estenik, J.F. & Collins, W.J. 1979. In vivo and in vitro studies of mixed function oxidase in an aquatic insect, Chironomus riparius. In: Pesticide and zenobiotic metabolism in Aquatic Organisms. Am. Chem. Society, Symposium Series 99.
447Frear, D.E.H. & Boyd, J.E. 1967. Use of Daphnia magna for microbioassay of pesticides, I.J.Econom. Entomol. 60: 1228 - 1238.
1953Hanazato, T. & Yasuno, M. 1987. Effects of a carbamate insecticide, carbaryl, on the summer phyto- and zooplankton communities in ponds. Environ. Pollut. 48: 145.
550Hashimoto, Y. & Nishiuchi Y. 1981. Establishment of bioassay methods for the evaluation of acute toxicity of pesticides to aquatic organisms. J. Pestic. Sci. (Jap.) 6: 257.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
143Ishikura, H. 1972. Impact of pesticide use on the Japanese environment. In: Environmental Toxicology of Pesticides, 25, Academic Press, N.Y.
704Kemp, H.T., Little, R.L., Holoman, V.L. & Darby, R.L. 1973. Water quality data book - Vol. 5. Effects of chemicals on aquatic life. EPA. Water pollution control research series 09/73.
705Kenaga, E.E. 1979. Acute and chronic toxicity of 75 pesticides to various animal species. Down to earth 35(2): 25 - 31.
1767Khangarot, B.S., Sehgal, A. & Bhasin, E.K. 1985. Man and biosphere - Studies on the Sikkim Himalayas. Part 5: Acute toxicity of selected heavy metals on the tadpoles of Rana hexadactyla. Acta hydrochim. et hydrobiol. 13(2): 259 - 263.
1768Khangarot, B.S., Sehgal, A. & Bhasin, M.K. 1985. Man and Biosphere - Studies on the Sikkim Himalayas. Part 6: Toxicity of selected pesticides to frog tadpole Rana hexadactyla (Lesson). Acta hydrochim. hydrobiol. 13(3): 391 - 394.
1589Lewis, R.J. & Sweet, D.V. 1984. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 83-107-4.
2450Li, W.,Merrill, D. E. & Haith, A. 1990. Loading functions for pesticide runoff. Research Journal WPCF, 62(1): pp. 16 - 26.
869Macek, K.J. & McAllister, W.A. 1970. Insecticide susceptibility of some common fish family representatives. Trans. Amer. Fish. Soc. 99(1): 20 - 27.
897Martin, H. 1968. Pesticide manual, British crop protection council, Clacks Farm, Boreley, Ombersley, Droitwich, Worcester, U.K.
912McCann, J. et al. 1975. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals, Proc. Nat. Acad. Sci. USA, 72(12): 5135-5139 Medical Sciences, Dec.
1899McKim, J.M. et al. 1987b. Use of respiratory-cardiovascular responses of rainbow trout (Salmo gairdneri) in identifying acute toxicity syndromes in fish. Part 2. Malathion, carbaryl, acrolein and benzaldehyde. Environ. Toxicol. Chem. 6: 313.
3105MITI 1992. Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Compild under the Safety Division Basic Industries Bureau Ministry of International Trade & Industry, Japan. Edited by Chemicals Inspection & Testing Institute, Japan.
1053Nishiuchi, Y. & Hashimoto, Y. 1967. Toxicity of pesticide ingredients to some fresh water organisms. Botyu-Kagaku 32: 5-11.
1787Omkar & Shukla, G.S. 1985. Toxicity of insecticides to Macrobrachium lamarrei (H. Milne Edwards) (Decapoda, Palaemonidae). Crustaceana 48: 1.
1769Palawski, D., Hunn, J.B. & Dwyer, F.J. 1985. Sensitivity of young striped bass to organic and inorganic contaminants in fresh and saline waters. Transactions of the American Fisheries Society 114: 748 - 753.
1123Phipps, G.L. & Holcombe, G.W. 1985. A method for multiple species toxicant testing: acute toxicity of 10 chemicals to 5 vertebrates and 2 invertebrates. Environm. Pollut. (Ser A) 38: 141 - 157.
1954Rao, K.R.S.S. 1987. Variations in the nitrogen products of Channa punctatus augmented by interaction of carbaryl and phenthoate in the media. J. Environ. Biol. 8(2-suppl.): 173.
1226Sanders, H.O. & Cope, O.B. 1968. The relative toxicities of several pesticides to naiads of three species of stoneflies. Limnol. Oceanogr. 13(1): 112 - 117.
1225Sanders, H.O. & Cope, O.B. 1966. Toxicities of several pesticides to two species of cladocerans. Trans. Am. Fish Soc. 95: 165 - 169.
1221Sanders, H.O. 1969. Toxicity of pesticides to the Crustacean, Gammarus lacustris. Bureau of Sport Fisheries and Wildlife technical paper 25, Government Printing Office, Washington, D.C.
1223Sanders, H.O. 1972. The toxicities of some insecticides to four species of malocostracan crustacea. Fish Pesticide Res. Lab. Columbia, Mo., Bureau of Sport Fish and Wildlife.
1897Saxene, P.K. & Garg, M. 1978. Effects of insecticidal pollution on ovarian recrudescence in fresh water teleost Channa punctatus (B1). Indian J. Exp. Biol. 16: 689.
1743Schafer , E.W.Jr., Bowles, W.A.Jr., Hurlbut, J. 1983. The acute oral toxicity, repellency and hazard potential of 993 chemicals to one or more species of wild and domestic birds. Arch. Environ. Contam. Toxicol. 12: 355 - 382.
1796Shukla, G.S. & Omkar. 1984. Insecticide toxicity to Macrobrachium lamarrei (H. Milne Edwards) (Decapoda, Palaemonidae). Crustaceana 46; 283.
1276Shukla, G.S. et al. 1982. Acute toxicity of few pesticides to an aquatic Insect, Ranatra elongata (Fabr.). J. Adv. Zool. 3: 148.
2101Sweet, D. 1987. Registry of toxic effects of chemical substances 1985 - 1986 edition. U.S. Department of health and human services.
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.
1896Winterlin, W. & Walker, G. 1973. Carbaryl residues in bees, honey and bee-bread following exposure to carbaryl via the food supply. Arch. Environm. Contam. Toxicol. 1(4): 362 - 380.
1895Wolfe, N.L., Zepp, R.G. & Paris, D.F. 1978. Carbaryl, propham, and chlorpropham: a comparison of the rates of hydrolysis and photolysis with the rate of biolysis. Water Res. 12: 565 - 571.

 
 
© Copyright Environmental Administration