www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


19.4.2024

Data bank of environmental properties of chemicals


Chemical
Benzyl chloride
CAS-number :
100-44-7
 
Synonyms :
alpha-chlorotoluene
Bentsyylikloridi
chloromethyl benzene
chlorophenylmethane
 
Sumformula of the chemical :
C7H7Cl
EINECS-number :
2028536
 
Uses :
Dyes, intermediate.
 
Odor :
Characteristic.

Lacrimator aromatic.

Threshold values:
0.25 mg/m3 = 0.047 ppm; 0.04 ppm (Hovious et al. 1973,
Verschueren 1983).

PIT50% (Population Identification Threshold): 0.01 ppm
PIT100 %: 0.047 ppm (Veschueren 1983).
 
Molecular weight :
126.59
 
Spesicif gravity (water=1) :
1.102  at 18/4 °C
 
Vapor density (air=1) :
4.36 
 
Conversion factor, 1 ppm in air=_mg/m3 :
5.262  mg/m3
 
Conversion factor, 1 mg/m3 in air=_ppm :
0.19  ppm
 
Vapor pressure, mmHg :
22 °C
1.7  30 °C
3.62  mmHg/37.8°C, MITI 1992
 
Water solubility, mg/l :
493  at 20°C, Ohnishi & Tanabe 1971
 
Melting point, °C :
-41  -41/-48
-48 
 
Boiling point, °C :
179 
179.4  MITI 1992
 
Log octanol/water coefficient, log Pow :
2.3  Sangster 1989
2.3  Hansch & Leo 1985
 
Henry's law constant, Pa x m3/mol :
34.4  calc. Howard 1989
 
Volatilization :
Using the Henry's Law constant the volitilization half-life of
benzyl chloride from a model river 1 m deep flowing 1 m/sec,
with a wind velocity of 3 m/sec, can be estimated to be 0.3
days (Lyman et al. 1982).
 
Mobility :
Based upon the log octanol/water partition coefficient and the
water solubility, the soil sorption coefficient for benzyl
chloride can be estimated to range from 123 to 482 utilizing
various regression equations. 
These estimates indicate that
benzyl chloride will have medium to high mobility in soil
(Lyman et al. 1982) (Swann et al. 1983).
 
Photochemical degradation in air :
Photooxidation half-life in air:
9.1d - 22hr, based upon measured rate constant for vapor phase 
reaction with hydroxyl radicals in air (Howard 1991).
 
Other reactions in atmosphere :
The atmospheric residence time of benzyl chloride due to
vapor-phase reaction with hydroxyl radicals, has been estimated
to be approx 3 days in a typical atmosphere containing 1x10+6
hydroxyl radicals/cm3. 
The rate constant for the reaction
between benzyl chloride and ozone in the atmosphere has been
determined to be less than 0.04x10-8 cm3/mol-sec, which
corresponds to ahalf-life >200 days in a typical atmosphere
(Atkinson 1982).
 
Hydrolysis in water :
The aqueous hydrolysis rate constant for benzyl chloride has
been found to range from 0.042x10-5 sec-1 at 0.1°C to 1.38x10-5
sec-1at 25°C, which corresponds to half-lives of 19.1 and 0.58
days, respectively. 
The rate of aqueous hydrolysis has been
found to be independent of pH up to pH 13.0. 
The aqueous
hydrolysis products of benzyl chloride are benzyl alcohol and
hydrogen chloride (Albery & Curran 1972) (Tanabe & Sano 1962).

First-order hydrolysis half-life:
15hr, based upon overall rate constant (kh=1.28X10-5) at pH 7
and 25 °C.
12.1d, based upon overall rate constant (kh=3.98X10-5) at pH 7
and 5 °C (Howard 1991).
 
Hydrolysis in acid :
Acid rate constant (M(H+)-hr)-1:
kh=1.28X10-5, based upon overall rate constant that is 
independent of pH (Howard 1991).
 
Hydrolysis in base :
Base rate constant (M(OH-)-hr)-1:
kh=1.28X10-5, based upon overall rate constant that is 
independent of pH (Howard 1991).
 
Half-life in air, days :
9.1  9.1d - 22hr,
0.916  based upon photooxidation half-life in air.
  Howard 1991
 
Half-life in soil, days :
12.1  12.1d - 15hr,
0.625  scientific judgement based upon estimated hydrolysis half-lives.
  Howard 1991
 
Half-life in water, days :
12.1  12.1d - 15hr,
0.625  in surface water: scientific judgement based upon estimated hydrolysis half-lives,
12.1  12.1d - 15hr,
0.625  in ground water: scientific judgement based upon estimated hydrolysis half-lives.
  Howard 1991
 
Aerobic degradation in water :
Aerobic half-life:
4w - 7d, scientific judgement based upon unacclimated aqueous 
screening test data (Howard 1991).
 
Anaerobic degradation in water :
Anaerobic half-life:
16w - 4w, scientific judgement based upon estimated aqueous 
aerobic biodegradation half-life (Howard 1991).
 
Total degradation in water :
Biodegradation:
71% by BOD
period: 14d
substance: 100 mg/l
sludge: 30 mg/l
(MITI 1992)

Biodegradability tests performed under the Japanese MITI
protocol have found benzyl chloride to be readly biodegradable.

Benzyl chloride biodegraded significantly with the formation of
dechlorinated products during a 2-day incubation period using
raw sewage and raw sewage acclimated to non-chlorinated
compounds. 
None of the methods have controls for chemicals
hydrolysis, so these result may be more indicative of the
biodegradation of the chemical hydrolysis product, benzyl
alcohol (Howard 1989).
 
Ready biodegradability :
Confirmed to be biodegradable (Anon. 1987).
 
Other information of bioaccumulation :
Based upon the log octanol/water partition coefficient and the
water solubility, the bioconcentration factor for benzyl
chloride can be estimated to be 33 and 16, respectively. 
These
estimations suggest that bioconcentration in aquatic organisms
will not be significant (Lyman et al. 1982).
 
LD50 values to mammals in oral exposure, mg/kg :
1231  orl-rat, Lewis & Sweet 1984
 
LC50 values to mammals in inhalation exposure, ppm :
150  2 hr, ihl-rat, Lewis & Sweet 1984
 
Mutagenicity :
Mutagenicity in the Salmonella test: weakly mutagenic (without
liver homogenate):
0.02 revertant colonies/nmol;
230 revertant colonies at 2 mg/plate
(McCann et al. 1975)
 
Effects on microorganisms :
Bacteria: Pseudomonas putida: inhibition of cell multiplication
starts at 4.8 mg/l (Bringmann & Kühn 1976).
 
LOEC values to algae, mg/l :
30  rpd, schr, Microcystis aeruginosa,
  Bringmann & Kuhn 1976
 
LC50 values to crustaceans, mg/l :
3.9  srv, act, 96 hr, Penaeus setiferus,
  Curtis et al. 1979
 
LC50 values to fishes, mg/l :
srv, act, 96hr, Branchydanio rerio,
3 - 16, srv, act, 48 hr, Leuciscus idus,
16  Wellens 1982
  --
0.4  srv, schr, 14 d, Poelicia reticulata,
  Hermens et al. 1985
  --
srv, act, 96 hr, Pimephales promelas,
  Curtis et al. 1979
 
Other information of water organisms :
Toxicity threshold (cell multiplication inhibition test):
algae (Microcystis aeruginosa): 30 mg/l
(Bringmann & Kühn 1976)
green algae (Scenedesmus quadricauda): 50 mg/l
protozoa (Entosiphon sulcatum): 25 mg/l
protozoa (Uronema parduczi): 50 mg/l
(Bringmann & Kühn 1980).

Protozoa: Vorticela campanula: toxic: 11 mg/l
          Paramaecium caudatum: toxic: 800 mg/l
Fish:     Trutta iridea: paralysis: 10 mg/l
          Cyprinus carpio: paralysis: 17 mg/l
          (Meinck et al. 1970).
 
Other effects on aquatic ecosystems :
Reduction of amenities: faint odour: 0.0016 mg/l
(Verschueren 1983).

References
3210Albery, W. J. & Curran, J. S. 1972. J. Chem. Soc. Chem. Comm. 1972: 425-426.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
3211Atkinson, R. et al. 1982. Int. J. Chem. Kin. 14: 13-18.
187Bringmann, G. & Kühn, R. 1976. Vergleichende Befunde der Schadwirkung wassergefährdender Stoffe gegen Bakterien (Pseudomonas putida) und Blaualgen (Microcystis aeruginosa). Gwf-Wasser-Abwasser 117(9).
188Bringmann, G. & Kühn, R. 1980a. Comparison of the toxicity thresholds of water pollutants to bacteria, algae and protozoa in the cell multiplication inhibition test. Water Res. 14: 231 - 241.
189Bringmann, G. & Kühn, R. 1980b. Bestimmung der biologischen Schadwirkung wassergefahrdender Stoffe gegen Protozoen. II. Bakterienfressende Ciliaten, Z. Wasser/Abwasser Forsch. 1: 26 - 31.
300Curtis, M.W., Copeland, T.L. & Ward, C.H. 1979. Acute toxicity of 12 industrial chemicals to freshwater and saltwater organisms. Water Res. 13: 137 - 141.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
577Hermens, J., Leeuwangh, P. & Musch, A. 1985a. Joint toxicity of mixtures of groups of organic aquatic pollutants to the guppy (Poecilia reticulata). Ecotox. Environm. Safety 9: 321 - 326.
1867Hovious, J.C., Conway, R.A., Ganze, C.W. 1973. Anaerobic lagoon pretreatment of petrochemical wastes. JWPCF 45(1).
3047Howard, P. H. 1989. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. I: Large Production and Priority Pollutants. Lewis Publishers, Inc. Chelsea. pp 574.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
1589Lewis, R.J. & Sweet, D.V. 1984. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 83-107-4.
2960Lyman, W. J. et al. 1982. Handbook of Chemical Property Estimation Methods. Environmental behavior of organic compounds. McGraw-Hill New York.
912McCann, J. et al. 1975. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals, Proc. Nat. Acad. Sci. USA, 72(12): 5135-5139 Medical Sciences, Dec.
950Meinck, F., Stoof, H. & Kohlschutter, H. 1970. Les eaux residuaires industrielles.
3105MITI 1992. Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Compild under the Safety Division Basic Industries Bureau Ministry of International Trade & Industry, Japan. Edited by Chemicals Inspection & Testing Institute, Japan.
3212Ohnishi, R. & Tanabe, K. 1971. Bull. Chem. Soc. Japan 41: 2647-2649.
3104Sangster, J. 1989. Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data, Vol 18, No. 3: 1111 - 1229.
2988Swann, R. L. et al. 1984. Res. Rev. 85: 17 - 28.
3213Tanabe, K. & Sano, T. 1962. Hokkaido Daigaku 10: 173-182.
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.
1531Wellens, H. 1982. Comparison of the sensitivity of Branchydanio rerio and Leucistus idus by testing the fish toxicity of chemicals and wastewaters. Z. Wasser Abwasser Forsch. (Ger.) 15: 49.

 
 
© Copyright Environmental Administration