www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


26.11.2024

Data bank of environmental properties of chemicals


Chemical
Benzene
CAS-number :
71-43-2
 
Synonyms :
Bentseeni
benxole
benzol
coal naphta
cyclohexatriene.
phene
phenyl hydride
 
Sumformula of the chemical :
C6H6
EINECS-number :
2007537
 
Uses :
Manufacturing styrene, phenol, detergents, organic chemicals, 
pesticide, plastics and resins, synthetic rubber, aviation 
fuel, pharmaceuticals, dye, explosives, PCB gasoline, tanning, 
flavors and perfumes, paints and coatings; nylon intermediates; 
food processing, photographic chemicals; as a solvent and a 
fuel additive; intermediate (25%); byproduct.
 
State and appearance :
Colourless liquid.
 
Odor :
Threshold Odour Concentration (T.O.C.):
0.516 mg/m3 = 0.160 ppm (Stockham et al. 1969)
43 mg/m3 = 13.3 ppm (Stockham et al. 1969)
1 - 300 ppm (Verschueren 1983)
4.68 ppm (Verschueren 1983)
1 ppm (Verschueren 1983)
60 ppm (Verschueren 1983, Summer 1971)
100 ppm (Verschueren 1983)
320 ppm (Verschueren 1983)
180 mg/m3 = 60 ppm (Verschueren 1983)
100.7 mg/m3 = 31.0 ppm (Verschueren 1983)
2.8 mg/m3 = 0.86 ppm (Verschueren 1983)
recognition: 105 - 210 mg/m3 (Leonardos 1969)

Population Identification Threshold 50 %: 2.14 ppm
Population Identification Threshold 100 %: 4.68 ppm
distinct odour: 310 mg/m3 = 90 ppm (Verschueren 1983).

Human odour perception: 3.0 mg/m3 = 1 ppm
Animal chronic exposure: adverse effect: 3.2 mg/m3
(Stern 1968).

Threshold odour concentration in water: 2 - 31 mg/l
(Fawell & Hunt 1988).
 
Molecular weight :
78.12
 
Spesicif gravity (water=1) :
0.8786  at 20/4 °C
 
Vapor density (air=1) :
2.77 
 
Conversion factor, 1 ppm in air=_mg/m3 :
3.26  mg/m3
 
Conversion factor, 1 mg/m3 in air=_ppm :
0.31  ppm
 
Vapor pressure, mmHg :
76  20 °C
95.19  25 °C, Boublik et al. 1984
118  30 °C
 
Water solubility, mg/l :
1791  May 1980
1769  25 °C, Aquan-Yuen et al. 1979
1779.5  25 °C, Mackay & Shiu 1975
700  MITI 1992
 
Melting point, °C :
5.5 
5.53  Suntio et al. 1988
 
Boiling point, °C :
80.1 
80.1  MITI 1992
 
Log octanol/water coefficient, log Pow :
1.56  1.56 - 2.15, Sabljic 1987
2.15 
2.13  Anon 1988
2.11  Schwarzenbach & Westall 1981
1.56  Hansch & Leo 1979
2.15  Hansch & Leo 1979
2.39  Veith et al. 1979
2.12  Banerjee et al. 1980
2.2  Hammers et al. 1982
2.28  Hanai et al. 1981
2.16  D'Amboise & Hanai 1982
2.13  Hansch & Leo 1985
2.13  Sangster 1989
 
Log organic C/water coefficient, log Pcw :
1.92  exptl, Schwarzenbach & Westall 1981
1.98  exptl, Schwarzenbach & Westall 1981
2.01  calcd, Schwarzenbach & Westall 1981
 
Henry's law constant, Pa x m3/mol :
430  Anon 1988
562  exptl., Mackay et al. 1979
564  calc. Yaws et al. 1991
 
Volatilization :
Relative volatility (nBuAc=1) = 6.91
 
Mobility :
Equilibrium distribution:
        mass %
air     99.34
water    0.65
solid    0.02
(Anon 1988).

Koc Woodburn silt loam:
31         (Chiou et al. 1983)
31.7 - 143 (Sabljic 1984)
83         (Kenaga 1980).

Benzene leaches in soil, passing through soil during bank 
infiltration (Green et al. 1981) (Piet & Morra 1983).
 
Photochemical degradation in air :
Photochemical reaction; estimated lifetime under photochemical
smog conditions in SE England: 28 hours (Verschueren 1983).

Gas-phase benzene will not be subject to direct photolysis but
will react with photochemically produced hydroxyl radicals with
a half-life of 13.4 days calculates using an experimental rate
constant for the reaction. 
The reaction time in polluted
atmospheres that contain nitrogen oxides or sulfur dioxide is
accelerated with the half-life being reported as 4-6 hours with
50% mineralization toCO2 in approximately 2 days. 
Products of
photooxidation include phenol, nitrophenols, nitrobenzene,
formic acid and peroxyacetal nitrate (Korte & Klein 1982).

Since gas-phase benzene or benzene dissolved in cyclohexane
does not absorb light of 290 nm or longer, it will not be
expected to directly photolyze in sunlight in these media.

However, shight shifts in wavelength of absorption might be
expected in more representative environmental media, such as
water; e.g., a half-life of 16.9 days was reported for
photolysis of benzene dissolved in deionized water saturated
with air exposed to sunlight (Howard & Durkin 1974) (Hustert
et al. 1981).
 
Photochemical degradation in water :
Photodegradation, which according to one experiment has a 
half-life of 17 days, could contribute to benzene's removal in 
situations of cold water, poor nutrients, or other conditions 
less conductive to microbial degradation (Hustert et al. 1981).
 
Hydrolysis in water :
Hydrolysis is not a significant process for benzene (Lyman et 
al. 1982).
 
Chemical oxygen demand, g O2/g :
2.15  5 days, Bridie et al. 1979
 
Biochemical oxygen demand, g O2/g :
2.18  5 days, Bridie et al. 1979
 
Half-life in air, days :
2.09  50.1hr - 501hr,
20.9  based upon photooxidation half-life in air,
  Howard 1991
 
Half-life in soil, days :
5d - 16d,
16  scientific judgement based upon unacclimated aqueous
  aerobic biodegradation half-life,
  Howard 1991
 
Half-life in water, days :
0.2  calculated, 25 °, 1m depht,
  Verschueren 1983
  --
16  in river water
28  in ground water
  Vaishnav & Babey 1987
  --
5d - 16d,
16  in surface water, scientific judgement based upon
  unacclimated aqueous aerobic biodegradation
  half-life,
10  10d - 24mo,
720  in ground water, scientific judgement based upon
  unacclimated aqueous aerobic (low t1/2) and
  anaerobic (high t1/2) biodegradation half-life,
  Howard 1991
 
Aerobic degradation in water :
Biodegradation to CO2 in estuarine water:
Conc.          incubation    Degradation rate    Turnover
mg/l   Month   time (hr)     (mg/l/day) x 1000   time (days)
0.006  June    24            0.2                 30
0.012  June    24            0.26                46
0.024  June    24            0.33                75
(Verschueren 1983).

Biodegradation half-lives of 28 and 16 days were reported in
die-away for degradation of up to 3.2 µl/l benzene tests using
ground water and Lester river water, respectively, under
aerobic conditions (Vaishav 1986).

Complete biodegradtion in 16 days was reported under simulated
aerobic ground water conditions at 20°C (Delfino & Miles 1985).
 
Total degradation in soil :
If benzene is released to soil it will be subject to rapid
volatilization near the surface, and which does not evaporate
will be highly to very highly mobile in soil and may leach to
the ground water (Howard 1990).

The effective half-lives for volatilization without water
evaporation from soil to benzene uniformly distributed to 1 and
10 cm in soil were 7.2 and 38.4 days, respectively (Jury et al
1984).

Benzene may be subject to biodegradation based on reported
biodegradation of 24% and 47% of the initial 20 ppm benzene in
a base-rich para-brownish silt in 1 and 10 weeks, respectively
(Haider et al. 1974).
 
Total degradation in water :
The estimated half-life for volatilization of benzene from a 
river 1 m deep flowing i m/sec with a wind velocity of 3 m/sec 
is estimated to be 2.7 hr at 20°C. 
It will not be expected to 
significantly addorb to sediment, bioconcentrate in aquatic 
organisms, or hydrolyze. 
It may be subject to biodegradation 
based on a reported biodegradation half-life of 16 has in an 
aerobic river die-away test (Wakeham et al. 1983).

Biodegradation:
39-41% by BOD (on the upward trend)
period: 14d
substance: 100 mg/l
sludge: 30 mg/l
(MITI 1992).
 
Degradation and transformation products :
phenol
unidentified phenols * using pure cultures of microorganisms
(Smith & Rosazza 1974).

catecol
cis-1,2-dihydroxy-1,2-dihydrobenzene * using pure cultures of 
microorganisms (Gibson et al. 1968).
 
Ready biodegradability :
Confirmed to be biodegradable (Anon. 1987).
 
Other information of degradation :
*-------------------------------------------------------------*
ENVIRONMENT    INITIAL CONC   REDOX-  TEMP   DEGRADATION  REF
               mg/l           COND.   °C     %/day
*-------------------------------------------------------------*
water          1 - 3        aerobic   20     100/16       a
water          1 - 3        aerobic   20       0/41       a
water            5          aerobic   25      49/7        b
water           10          aerobic   25      37/7        b
water (adapted)  5          aerobic   25     100/7        b
water (adapted) 10          aerobic   25     100/7        b
water          0.295        aerobic   -       92/17       c
groundwater    0.0041       aerobic   13     100/8        d
sludge         appr. 50     anaerob.  35       0/56       e
sludge         appr. 50     anaerob.  35       0/56       e
soil           0.613       methanogen 17      72/280      f
soil           0.613       methanogen 17     >99/840      f
sterile soil   0.613       methanogen 17       0/280      f
sterile soil   0.613       methanogen 17      30/840      f
*-------------------------------------------------------------*
a) Delfino & Miles 1985         d) Jamison et al. 1976
b) Tabak et al. 1981            e) Horowitz et al. 1982
c) Battermann 1984              f) Wilson et al. 1986
(Anon 1987b).

The half-life of benzene in estuarine water was 6 days (Lee &
Ryan 1979).

In a marine ecosystem biodegradation occurred in 2 days after
an application period of 2 days and 2 weeks in the summer and
spring, respectively, whereas no degradation occurred in winter
(Wakeham et al. 1983).

Benzene at 50 ppm was 90% degraded by industrial wastewater
seed incubated at 23 °C for 6 hours (Davis et al. 1981).
 
Metabolism in mammals :
No information appears to be available with regard to the
gastrointestinal absorption of benzene, though a value of
around 40 - 50 % has been reported in several studies for
respiratory absorption in humans. 
Percutaneous absorption has
been demostrated to occur slowly in man and rhesus monkey.

Autoradiographic and pharmacokinetic studies have shown that
benzene has an affinity for nervous and adipose tissue, with
high levels also found in the bone marrow, liver, spleen and
blood.

Benzene is metabolized primarily in the liver to phenol,
catechol, quinol and hydroxyquinol and subsequently to
conjugates of ester sulfates and glucuronides. 
In bone marrow,
phenol appears to be the major metabolite shortly after
exposure, though catechol and hydroquinone predominate
subsequently. 
It is thought that secondary metabolites of the
latter two compounds are probably responsible for the toxic
effects of bentzene in the bone marrow.

The elimination of benzene by the lungs has been reported to be
around 12 % of the retained dose in humans but up to 70 % in
the experimental animals. 
Excretion in the urine as free or
conjugated phenols accounts for 50 - 87 % of retained benzene
in humans, but only 23 % is elimated in this way by rodents 
(Fawell & Hunt 1988).
 
Bioconcentration factor, fishes :
10.9  Clupea harengus pallasi, in eggs
6.9  Clupea harengus pallasi, yolk-sac larvae
3.9  Clupea harengus pallasi, feeding larvae
  Verschueren 1983
  --
3.5  Anguilla japonica, Verschueren 1983
  --
3.5  Anquilla japonica, Ogata & Miyake 1978
  --
4.4  Clupea harengus pallasi,
  Korn et al 1977
  --
4.3  Carassius auratus, Ogata et al. 1984
  --
1-10, fish, BUA 1988
10 
 
Other information of bioaccumulation :
Based on the reported and estimated BCF, benzene will not
expected to bioconcentrate in aquatic organisms (Howard 1990).
 
LD50 values to mammals in oral exposure, mg/kg :
3800  orl-rat, Sax 1984
 
LCLo values to mammals in inhalation exposure, mg/kg :
65  5 yr, ihl-hmn, Lewis & Sweet 1984
 
TDLo values to mammals in oral exposure, mg/kg :
130  orl-hmn, Lewis & Sweet 1984
 
Effects on physiology of mammals :
Both epidemiological and animal studies have shown that 
pancytopenia is the most common effect of chronic exposure to 
benzene (Fawell & Hunt 1988).
 
Health effects :
Man:
severe toxic effects: 1500 ppm, 60 min
symptoms of illness: 500 ppm
unsatisfactory: 50 ppm
(Verschueren 1983).
 
Carcinogenicity :
There is good evidence that benzene can cause leukemia in man
and some indication that it does also in experimental animals.

This carcinogenic action of benzene also appears to be
consistent with that of tumour promotion. 
There is no evidence
of anyother benzene-related tumours, apart from zymbal gland
carcinomas and mammary carcinomas reported in one rat study
(Fawell & Hunt 1988).



Carcinogen (IARC).
 
Mutagenicity :
Benzene has been reported to cause chromosomal abnormalities in 
vitro and in vivo in mammals, but has not yet been shown to be 
mutagenic in bacterial assays (Fawell & Hunt 1988).
 
Teratogenicity :
Embryotoxicity through inhalation: CF-1 mice and New Zealand
white rabbit were exposed to 0 or 500 ppm of benzene to 7 hr
per day from days 6 through 15 (mice) and 6 through 18
(rabbits) of gestation. 
Little evidence of maternal toxicity
was seen in either species. 
Although some signs of embryonal
toxicity were observed in both mice and rabbits, a teratogenic
effect was not discerned in either spicies inhaling 500 ppm of
benzene (Verschueren 1983).

Benzene can cause retardation of foetal development at high
doses, but does not appear to be teratogenic (Fawell & Hunt 
1988).
 
Effects on amphibia :
Mexican axoloth (3 - 4 weeks after hatching): LC50 48 hr: 
370 mg/l; clawed toad (3 - 4 weeks after hatching) LC50 48 hr: 
190 mg/l (Slooff & Baerselman 1980).
 
Maximum longterm immission concentration in air for plants,mg/m3 :
VDI 2306
 
Maximum longterm immission concentration in air for plants,ppm :
VDI 2306
 
Effects on microorganisms :
Toxicity threshold (cell multiplication inhibition test):
bacteria (Pseudomonas putida): 92 mg/l (Bringmann & Kühn 1980a).
 
Effects on wastewater treatment :
Removal/secondary treatment 44% - 100%,
removal percentages based upon data from continuous activated 
sludge biological treatment simulators (Howard 1991).
 
EC50 values to microorganism, mg/l :
1500  15 min Microtox, Hermens et al. 1985
50  Microtox, Vasseur et al. 1986
150  >150, Microtox 20 °C, Vasseur et al.
  1986
 
EC50 values to algae, mg/l :
29  growth, 3d, Selenastrum capricornutum
  Galassi et al. 1988
 
NOEC values to algae, mg/l :
600  Selenastrum capricornutum, Slooff et
  al. 1983
 
LC50 values to crustaceans, mg/l :
15  96 hr, Daphnia pulex, Govers et al. 1984
  --
27  96hr,Palaemonetes pugio,Neff et al.1976
  --
108  96hr, Cancer magister, crab
  larvae-stage 1
20  96hr, Crangon franciscorum,Verschueren
  1983
  --
305  48hr,Daphnia pulex,Canton & Adema 1978
430  48hr,Daphnia magna
370  48hr,Daphnia cucullata
  --
120  48hr, Asellus aquaticus, Slooff 1983
42  48hr, Gammarus pulex, Slooff 1983
 
EC50 values to crustaceans, mg/l :
18  24hr, Daphnia magna
  Galassi et al. 1988
 
LC50 values to fishes, mg/l :
5.3  96 hr, Salmo gairdneri, DeGraeve et al.
15.1  96hr, Pimephales promelas 1982
  --
0.015  96 hr, Thymallus arcticus, Moles et al.
0.025  96hr, Gasterosteus aculeatus 1979
  --
20  48hr, Lepomis macrochirus
  McKee & Wolf 1963
  --
5.8  5.8 - 10.9, Morone saxatilis
10.9  Verschueren 1983
  --
12  1hr, Salmo trutta m. lacustris
  Woodiwiss & Fretwell 1974
  --
56  48hr, Salmo gairdneri,Slooff et al.1983
  --
46  24hr, Carassius auratus, Bridie et
  al.1979
  --
64  16 days, Poelicia reticulata
  Hermens et al. 1985
  --
9.2  24hr, 96hr, Salmo gairdneri
425  24hr, 96hr, Ictalurus punctatus
102  102-910, 24hr, Lepomis macrochirus
910 
100  100-600, 96hr, Lepomis macrochirus
600  Mayer & Ellersieck 1986
  --
28.6  4d, Poelicia reticulata
5.9  4d, Salmo gairdneri
  Galassi et al. 1988
  --
12.6  96 hr, Pimephales promelas
24.6  96 hr, Pimephales promelas, Geiger et al. 1990
 
EC50 values to fishes, mg/l :
12.6  96 hr, mbt, Pimephales promelas
20.2  96 hr, mbt, Pimephales promelas, Geiger et al. 1990
 
Effects on reproduction of water organisms :
Herring and anchovy larvae (Clupea pallasi; Engraulis mordex):
35 - 45 ppm caused delay in development of eggs and produces
abnormal larvae; 10 - 35 ppm caused delay in development of
larvae; decrease in feeding and growth, and increase in
respiration (Verschueren 1983).
 
Other information of water organisms :
Toxicity threshold (cell multiplication inhibition test):
algae (Microcystis aeruginosa): > 1400 mg/l
(Bringmann & Kühn 1976).

green algae (Scenedesmus quadricauda): > 1400 mg/l
protozoa (Entosiphon sulcatum): > 700 mg/l
protozoa (Uronema parduczi): 486 mg/l
(Bringmann & Kühn 1980).

Chlorella vulgaris: 50 % reduction of cell numbers vs controls,
after 1 day incubation at 20 °C: at 525 ppm (Verschueren 1983).

Inhibition of photosynthesis of a freshwater, non axenic
uni-algal culture of Selenastrum capricornutum:
10 mg/l: 95 % carbon-14 fixation (vs. controls)
100 mg/l: 84 % carbon-14 fixation (vs. controls)
1000 mg/l: 5 % carbon-14 fixation (vs. controls)
(Verschueren 1983).

Ciliate (Tetrahymena pyriformis): 24 hr LC100: 12.8 mmol/l
(Schultz et al. 1978).

Minnows: min. lethal dose: 5 - 7 mg/l; 6 hr (McKee & Wolf 1963).

Young Coho salmon: no significant mortalities up to 10 ppm
after 96 hours in artificial sea water at 8 °C; mortality:
12/20 at 50 ppm after 24 up to 96 hours in artificial sea water
at 8 °C; mortality 30/30 at 100 ppm after 24 hours in
artificial sea water at 8 °C (Verschueren 1983).

LC50, 48hr, >320 mg/l, Tubificidae
LC50, 48hr, 100 mg/l, Chironomus gr. thummi
LC50, 48hr, >320 mg/l, Erpobdella octoculata
LC50, 48hr, 230 mg/l, Lymnaea stagnalis
LC50, 48hr, 74 mg/l, Dugesia cf. lugubris
LC50, 48hr, 34 mg/l, Hydra oligactis
LC50, 48hr, 48 mg/l, Corixa punctata
LC50, 48hr, 10 mg/l, Ischura elegans
LC50, 48hr, 130 mg/l, Nemoura cinerea
LC50, 48hr, 34 mg/l, Cloeon dipterum
(Slooff 1983)
 
Other information :
Manufacturing source: petroleum refinery; solvent recovery
plant; coal tar distillation; coal processing; coal coking
(Anon. 1975).

The major source of atmospheric benzene is vehicle echausts.

Benzene is found in many foodstuffs and beverages at
significant levels. 
Exposure to waterborne benzene at current
levels is almost insignificant in comparison to exposure from
other sources (Fawell & Hunt 1988).

References
1809Altshuller, A.P. & Bufalini, J.J. 1971. Photochemical aspects of air pollution; A Review. Environm. Sci. & Techn. 5(1).
2357Anon 1988. Concentrations of industrial organic chemicals measured in the environment: The influence of physico - chemical properties, tonnage and use pattern. Technical report no 29. European chemical industry ecology & toxicology centre, ECETOC. pp. 105.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
2333Anon. 1987b. Nedbrydelighed af miljųfremmede organiske stoffer. Utredningsrapport U1. Lossepladsprojektet.
2604Aquan-Yuen, M., Mackay, D. and Shiu, W. Y. 1979. J. Chem. Eng. D 24: 30
2605Banerjee, S., Yalkowsky, S. H. and Valvani, S. C. 1980. Environ. Sci. Technol. 14: 1227 - 1229.
2336Battermann, G. 1984. Beseitigung einer Untergrundkontamination mit Kohlenwasserstoffen durch mikrobiellen Abbau. Chem. Inq. Tech. 56: 926 - 928.
2974Boublik, T. K. et al. 1984. The Vapor Pressures of Pure Substances. vol 17 Amsterdam, Netherslands: Elsevier Sci Publ.
182Bridie, A.L. et al. 1979. The acute toxicity of some petrochemicals to goldfish. Water Res. 13: 623.
1680Bridie, A.L., Wolff, C.J.M. & Winter, M. 1979. BOD and COD of some petrochemicals. Water Res. 13: 627 - 630.
187Bringmann, G. & Kühn, R. 1976. Vergleichende Befunde der Schadwirkung wassergefährdender Stoffe gegen Bakterien (Pseudomonas putida) und Blaualgen (Microcystis aeruginosa). Gwf-Wasser-Abwasser 117(9).
188Bringmann, G. & Kühn, R. 1980a. Comparison of the toxicity thresholds of water pollutants to bacteria, algae and protozoa in the cell multiplication inhibition test. Water Res. 14: 231 - 241.
189Bringmann, G. & Kühn, R. 1980b. Bestimmung der biologischen Schadwirkung wassergefahrdender Stoffe gegen Protozoen. II. Bakterienfressende Ciliaten, Z. Wasser/Abwasser Forsch. 1: 26 - 31.
3184BUA 1988. BUA-Stoffberich 24: Benzol. Gesellschaft Deutscher Chemiker.
241Canton, J.H. & Adema, D.M.M. 1978. Reproducibility of short-term and reproduction toxicity experiments with Daphnia magna and comparisons of the sensitivity of Daphnia magna with Daphnia pulex and Daphnia cucullata in short-term experiments. Hydrobiologia 59(2): 135 - 140.
3079Chiou, C. T. et al. 1983. Environ. Sci Technol. 17: 227 - 231.
2614D'Amboise, M. & Hanai, T. 1982. J. Liq: Chromatogr. 5: 229 - 244.
2975Davis, E. M. et al. 1981. Water Res. 15: 1125 - 1127.
332DeGraeve, G.M., Elder, F.G., Woods, D.C. & Bergman, H.L. 1982. Effects of naphthalene and benzene on fathead minnows and rainbow trout. Arch. Environ. Contam. Toxicol. 11: 487 - 490.
2334Delfino, J.J. & Miles, C.J. 1985. Aerobic and anaerobic degradation of organic contaminants in Florida groundwater. Proceeding - Soil Crop Sci. Soc. Fla. 44: 9 - 14.
415EPA. 1975. Identification of organic compounds in effluents from industrial sources, EPA-560/3-75-002.
2148Fawell, J.K. & Hunt, S. 1988. Environmental toxicology - organic pollutants. Ellis Horwood Limited, Chichester. 440 s.
2140Galassi, S. et al. 1988. Approaches to modeling toxic responses of aquatic organisms to aromatic hydrocarbons. Ecotoxicol. Environ. Saf. 16: 158.
3297Geiger, D. L. et al. 1990. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas) Vol 5. Center for Lake Superior Environmental Studies, University of Winsconsin-Superior, Superior, Winconsin, U.S.A. 332.
2976Gibson, D. T. et al. 1968. Biochem. 7: 2653 - 2662.
496Govers, H. et al. 1984. Quantitative structure-activity relationships for polycyclic aromatic hydrocarbons: correlation between molecular connectivity, physicochemical properties, bioconcentration and toxicity in Daphnia pulex. Chemosphere 13: 227.
3080Green, W. J. et al. J. Water Pollut. Control Fed. 53: 1347 - 1354.
2977Haider, K. et al. 1974. Arch. Microbiol. 96: 183 - 200.
2620Hammers, W. E., Meurs, G. J. and Deligny, C. L. 1982. J. Chromatogr. 247: 1 - 13.
2621Hanai, T., Tran, C. and Hubert, J. 1981. J. HRC & CC 4: 454 - 460.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
2622Hansch, C. & Leo, A. 1979. Substituent Constant for Correlation Analysis in Chemistry and Biology. Wiley: New York.
2414Hermens, J. et al. 1985c. Quantitative structure activity relationships and mixture of toxicity studies of organic chemicals in Photobacterium phosphoreum: Microtox test. Ecotox. Environ. Safety 9: 17.
577Hermens, J., Leeuwangh, P. & Musch, A. 1985a. Joint toxicity of mixtures of groups of organic aquatic pollutants to the guppy (Poecilia reticulata). Ecotox. Environm. Safety 9: 321 - 326.
2337Horowitz, A., Shelton, D.R., Cornell, C.P. & Tredje, J.M. 1982. Anaerobic degradation of aromatic compounds in sediment and digested sludge. Dev. Ind. Microbial. 23: 435 - 444.
2978Howard, P. H. and Durkin, P. R. 1981. Sources of contamination, ambient levels, and fate of benzene in the environment. pp. 65 USEPA-560/5-75-005.
2992Howard, P. H. et al. 1990. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. II: Solvents. Lewis Publishers, Inc. Chelsea. pp 546.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
2979Hustert K. et al. 1981. Chemosphere 10: 995 - 998.
1873Jamison. V.W., Raymond, R.L. & Hudson, J.O. 1976. Biodegradation of high-octane gasoline. In: J.M. Sharpley and A.M. Kaplan (eds.). Proceedings of the Third International Biodegradation Symposium. Applied Science Publishers, pp. 187 - 196.
3046Jury, W. A. et al. 1984. J. Environ. Qual. 13: 573 - 579.
2980Korn, S. et al. 1977. Fish Bull. Natl. Marine Fish Ser. 75: 633 - 636.
2981Korte, F. and Klein, W. 1982. Ecotox. Environ. Safety 6: 311 - 327.
2982Lee, R. F. and Ryan, C. 1979. Microbial. degradation of pollutants in marine environments pp 443 - 450 USEPA-600/9-72-012.
1643Leonardos, G. et al. 1969. Odour threshold determinations of 53 odourant chemicals. JAPCA 19(2): 91 - 95.
1589Lewis, R.J. & Sweet, D.V. 1984. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 83-107-4.
2960Lyman, W. J. et al. 1982. Handbook of Chemical Property Estimation Methods. Environmental behavior of organic compounds. McGraw-Hill New York.
2630Mackay, D. & Shiu, W. Y. 1975. Can. J. Chem. Eng. 53: 239.
2983Mackay, D. and Shiu, W. Y. 1981. J. Phys. Chem. Ref. Data 19: 1175 - 1199.
2631Mackay, D., Shiu, W. Y. and Sutherland, R. P. 1979. Environ. Sci. Technol. 13: 333.
2984May, W. E. 1980. In: Petroleum in the marine environment, adv. in chemistry series 185: 142 - 192 Washington DC: American Chemical Society.
2278Mayer, F.L. & Ellersieck, M.R. 1986. Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. U.S. Fish and Wildlife Service. Resource Publication 160, Washington, D.C.
921McKee, J.W. & Wolf, H.W. 1963. Water quality criteria. The Resources Agency of California, State Water Quality Control Board.
3105MITI 1992. Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Compild under the Safety Division Basic Industries Bureau Ministry of International Trade & Industry, Japan. Edited by Chemicals Inspection & Testing Institute, Japan.
980Moles, A. et al. 1979. Sensitivity of Alaskan freshwater and anadromous fishes to Prudhoe Bay crude oil nad benzene. Trans. Amer. Fish. Soc. 108: 408.
1021Neff, J.M., Anderson, J.W., Cox, B.A., Laughlin, R.B., Rossi, J.R.S.S. & Tatem, H.E. 1976. Effects of petroleum on survival, respiration and growth of marine animals. In: Sources, effects and sinks of hydrocarbons in the aquatic environments. American Institute of Biological Sciences, Washington D.C. pp. 519 - 539.
2985Ogata, M. and Miyake, Y. 1978. Water Res. 12: 1041 - 1044.
3061Ogata, M. et al. 1984. Bull. Environ. Contam. Toxicol. 33: 561 - 567.
2102Pickering, Q., Carle, D.O., Pilli, A., Willingham, T. & Lazorchak, J.M. 1989. Effects of pollution on freshwater organisms. Journal WPCF 61 (6): 998 - 1042.
3081Piet, G. J. & Morra, C. F. 1983. In: Artifical Groundwater Recharge Huisman, L., Olsthorn, T. L. eds Marshfield, M. A.: Pitman Pub pp 31 - 42.
2999Sabljic, A. 1984. J. Agric. Food Chem. 32: 243 - 246.
2324Sabljic, A. 1987. On the prediction of soil sorption coefficients of organic pollutants from molecular structure: application of molecular topology model. Environ. Sci. Technol. 21: 358 - 366.
3104Sangster, J. 1989. Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data, Vol 18, No. 3: 1111 - 1229.
1861Schultz, T.W., Kyte, L.M. & Dumont, J.N. 1978. Structure-toxicity correlations of organic contaminants in aqueous coal-conversion effluents. Arch. Environ. Contam. Toxicol. 7: 457 - 463.
2435Schwarzenbach, R. P. and Westall J. 1981. Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies. Environmental Science & Technology 15(11): 1360 - 1367.
1303Slooff, W. & Canton, J.H. 1983. Comparison of the susceptibility of 11 freshwater species to 8 chemical compounds. II (semi)chronic toxicity tests. Aquatic toxicology 4: 271 - 282.
1304Slooff, W., Canton, J.H. & Hermens, J.L.M. 1983. Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds. I (sub)acute toxicity tests. - Aquatic toxicology 4: 113 - 128.
1167Slooff, W. & Baerseman, R. 1980. Comparison of the usefulness of the Mexican axolotl (Ambystoma mexicanum) and the clawed toad (Xenopus laevis) in toxicological bioassays. Bull. Environm. Contam. Toxicol. 24: 439 - 443.
1302Slooff, W. 1983. Benthic macroinvertebrates and water quality assessment: some toxicological considerations. Aquat. Toxicol. 4: 73.
2987Smith, R. V. and Rosazza, S. P. 1974. Arch. Biochem. Biophys. 161: 551 - 558.
1598Stern, A.C. 1968. Air Pollution. Vol. 3, Academic Press N.Y., London. 661 pp.
162Stockham, J., O'Donnell, A. & Drawnieks, A. 1969. Chemical species in engine exhaust and their contribution to exhaust odor. Coordinating Research Council, New York. Report No IITRI C8150-5.
230Summer, W. 1971. Odor pollution of air, causes and control 1971. Leonard Hill Books.
2602Suntio, L. R., Shiu, W. Y. and Mackay, D. 1988. A review of the nature and properties of chemicals present in pulp mill effluents. Chemosphere 17(7): 1249 - 1290.
2988Swann, R. L. et al. 1984. Res. Rev. 85: 17 - 28.
2335Tabak, H.H., Quave, S.A., Mashni, C.I. & Barth, E.F. 1981. Biodegradability studies with organic priority pollutant compounds. Journal WPCF. 53: 1503 - 1518.
2989Vaishnav, D. D. and Babeu, L. 1986. J. Great Lakes Res. 12: 184 - 191.
2277Vaishnav, D.D. & Babeu, L. 1987. Comparison of occurance and rates of chemical biodegradation in natural waters. Bull. Environ. Contam. Toxicol. 39: 237 - 244.
2419Vasseur, P. et al. 1986. Influence of physicochemical parameters on the Microtox test response. Toxicity Assessment 1: 283.
1599VDI 2306. VDI-Kommission Reinhaltung der Luft. Maximale Immissions-Konzentrationen (MIK). Organische Verbildungen.
2564Veith, G.D., DeFoe, D.L. & Bergstedt, B.V. 1979. Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish Res. Bd. Can. 36: 1040 - 1048.
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.
2990Wakeham, S. G. et al. 1983. Bull. Environ. Contam. Toxicol. 31: 582 - 584.
2413Walker, J. D. 1987. Effects of chemicals on microorganisms. Journal WPCF 59 (6): 614 - 625.
2338Wilson, B.H. & Smith, G.B. & Rees, J.F. 1986. Biotransformation of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: a microcosm. Study. Environ. Sci. Technol. 20: 997 - 1002.
1565Woodiwiss, F.S. & Fretwell, G. 1974. The toxicities of sewage effluents, industrial discharges and some chemical substances to brown trout in the Trent River Authority Area. Water Poll. Control (G.B.) 73: 396.
3030Yaws, C., Yang, H-C. & Pan, X. 1991. Henry's law constants for 362 organic compounds in water. Chemical Engineering. November. p 179 - 185.

 
 
© Copyright Environmental Administration