www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


7.12.2025

Data bank of environmental properties of chemicals


Chemical
Atrazine
CAS-number :
1912-24-9
 
Synonyms :
2-chloro-4-ethylamino-6-isopropylamino-s-triazine
2-ethylamino-6-isopropylamino-4-chloro-1,3,5-triazine
2-etyyliamino-6-isopropyyliamino-4-kloori-1,3,5-triatsiini
atratsiini
 
Sumformula of the chemical :
C8H14ClN5
EINECS-number :
2151169
EINECS-number :
2176178
 
Uses :
Active ingredient in herbicides. 
Most widely used chemical for
pre-emergence weed control in corn. 
In Hawaii it is important
to the culture of sugarcane, pineapple, and macadamia nut.
 
State and appearance :
Colourless crystals.
 
Molecular weight :
215.72
 
Vapor pressure, mmHg :
0.0000003  20°C
 
Water solubility, mg/l :
70  25°C
33  33 - 45, 20 °C
45 
 
Melting point, °C :
173  173 - 175
175 
 
pKa :
1.68 
 
Log octanol/water coefficient, log Pow :
2.6  Anon. 1986
2.68  Anon. 1988
2.64  Anon. 1989
2.63  Mackay 1982
 
Henry's law constant, Pa x m3/mol :
0.00029  Anon. 1988
 
Mobility :
Equilibrium distribution:
        mass %
air      0.01
water   93.15
solid    6.84
(Anon 1988).

Theoretical distribution:
sediment and soil   32 %;
water               68 % (Nordic 1988).
 
Photochemical degradation in water :
Photochemical degradation in UV-light (254 nm): in water
solution Cl is changed with OH group (Esser et al. 1975).
 
Hydrolysis in water :
Hydrolysis, pH 5, half-life: 64 d; pH 7 - 9, half-life > 200 d
(Burkhard & Guth 1981).
 
Other chemical degradation processes :
Hydrolysis: Cl breaks away , hydroxy derivatives are formed in
sterile soil (Esser et al. 1975).
 
Half-life in soil, days :
60  Li et al. 1990
96  96 - 204
204  Dawson et al. 1980
 
Total degradation in soil :
75 - 100 % disappearance from soils in 10 months (Verschueren
1983).


In submerged soils: in 90 days 0.005 % of atrazine-14C was
recovered as 14CO2 (from ring labeled atrizine).

48 % to 85 % of atrazine was hydrolyzed in 30 days, depending
upon soil type.

Chemical hydrolysis of atrazine to hydroxyatrazine is the
principal pathway of detoxication in soil. 
Biological
dealkylation without dehalogination occurs simultaneously
leading to 2-chloro-4-amino-6-isopropylamino-s-triazine
(Goswami & Green 1971).
 
Other information of degradation :
Aerobic degradation: OECD screening, 28 d, 9 %; closed bottle, 28
d, 13 % (Rippen 1988).

In surface water, pH 3.8 - 8.1, 30 d, no degradation (Wolfe
1980).

Half-life (total degradation) in 10 years (Dawson et al. 1980). 
Phytotoxic persistency: 1 - 3 years (Torstensson 1988).

Anaerobic bacteria eliminates original chemical in < 1 day
(Jessee et al. 1983).

Hydroxyatrazine is the main product of chemical hydrolysis
in soil (Goswami & Green 1971).
 
Bioconcentration factor, fishes :
3 - 10, fish, Verschueren 1983
10 
  --
2.8  fish, Gunkel & Streit 1980
  --
3 - 40, fish
40  Rudoph & Boje 1988
 
Other information of bioaccumulation :
No biomagnification in a model ecosystem (Klaasen & Kadoum 1979).

Bioconcentration factor (mollusca):
3.7, mollusca, (Gunkel & Streit 1980).

Bioconcentration factor (algae):
10 - 83, algae (Verschueren 1983).

Bioconcentration factor (other):
2 - 15, snails (Verschueren 1983).

 
LD50 values to mammals in oral exposure, mg/kg :
1500  orl-rat, Lewis & Sweet 1984
750  orl-rbt
  --
3080  orl-rat, Martin 1968
1750  orl-mus
  --
840  840 - 880, orl-rat,
880  Rippen 1988
 
LD50 values to mammals in non-oral exposure , mg/kg :
7500  skn-rbt, Lewis & Sweet 1984
  --
7500  skn-rbt, Martin 1968
 
LC50 values to mammals in inhalation exposure, mg/m3 :
5200  4 hr, ihl-rat, Lewis & Sweet 1984
 
Other information of mammals :
In diet: when fed for 2 years to rats at dietary levels of 100
and 1000 ppm, no effect was observed (Martin 1968).

NOEL, 28 d, < 30 mg/kg, orl, rat (Rippen 1988).

No embryotoxic effect , 1000 mg/kg in birth (Rippen 1988).
 
Mutagenicity :
Negative Ames test and DNA reparation test (Rippen 1988).
 
Teratogenicity :
Teratogenic effect in fish (Birge et al. 1981).
 
Effects on plants :
0.1 mg atrazine/kg soil decreased oat biomass weight by 27.5 %. 
The phytotoxic limiting concentration of atrazine was
established as 0.01 mg/kg (Ladonin & Lunev 1983).

Lamb's -quarters (Chenopodium album) were killed completely
when atrazine was applied with a sprayer at 1.12 kg/ha as
preplant incorporation or preemergence or postemergence
(Bandeen & McLaren 1976).

Avena sativa, EC50, 0.001 mg/kg, TS substrate (Rudoph & Boje
1988).
 
Effects on microorganisms :
Bacteria: Pseudomonas putida: inhibition of cell multiplication
starts at > 10 mg/l (Bringmann & Kühn 1976).
 
EC50 values to algae, mg/l :
0.11  96hr, grw, Scenedesmus subspicatus
  Geyer et al. 1985
  --
0.1  rpd,pho,schr, Chlorococcum sp.
  Isochrysis galbana
  Bringmann & Kühn 1976
  --
0.105  0.04d, oxygen production
0.243  0.04d, oxygen production
0.099  0.04d, oxygen production
  Cyclotella meneghiniana
  Millie & Hersh 1987
  --
0.1  Chlorella, Rippen 1988
  --
0.055  Scenedesmus, Böhm 1977
 
LOEC values to algae, mg/l :
0.003  Microcystis aeruginosa
  Bringmann & Kühn 1976
 
LC50 values to crustaceans, mg/l :
3.6  48hr, Daphnia magna, Kenaga 1979
  --
40  > 40, act, Daphnia pulex
  Nishiuchi & Hashimoto 1967
  --
1.3  36hr, Procambarus, Rippen 1988
 
EC50 values to crustaceans, mg/l :
39  > 39, 2d, Daphnia magna
  Marchini et al. 1988
 
NOEC values to crustaceans, mg/l :
0.22  rpd, schr, Daphnia magna
  Macek et al. 1976b
 
LC50 values to fishes, mg/l :
0.87  96 hr, Salmo gairdneri
0.92  23 days, Salmo gairdneri (embryo)
0.22  0.22-0.34, Ictalurus punctatus
0.34  Birge et al. 1979
  --
5.4  5.4 - 8.4, 2yr, Lepomis macrochirus
8.4 
11  11 - 20, 1yr, Pimephales promelas
20 
4.5  4.5 - 8.8, Salmo gairdneri
8.8 
76  96hr, 76 - 100, Cyprinus carpio
100 
16  96hr, Lepomis macrochirus
4.0 - 6.0, 1.5yr, Salmo trutta
Macek et al. 1976b
  --
15  96hr, Lepomis macrochirus
  Klaassen & Kadoum 1979
  --
10  > 10, 48hr, Cyprinus carpio
  Nishiuchi & Hashimoto 1967
  --
26  act, Lepomis macrochirus, Kenaga 1979
12.6  act, Salmo gairdneri
 
LOEC values to fishes, mg/l :
0.12  Salmo trutta, Macek et. al. 1976b
  --
0.16  28d, fish, Rudoph & Boje 1988
 
NOEC values to fishes, mg/l :
0.065  grw,schr,Salmo trutta
0.23  Pimephales promelas
  Macek et al. 1976b
  --
0.054  0.054 - 0.28, Coregonus, grw
0.28  Gunkel 1981
 
Effects on physiology of water organisms :
Algae; 0.018 mg/l, 12 days; population growth effect (change in
cell number of algae species including pre-exponential lag rate
effects) (Hamilton et al. 1987).

Phaeodactylum tricornutum: 0.015 mg/l, 7 days; growth effect
(measurable change in length and/or weight) (Mayasich et al.
1987).

Effect on rate of colonization:
Algae, 12 d, 0.024 - 0.134 mg/l (Krieger et al. 1988);
aquatic community, 3 - 21 d, 0.0032 mg/l (Pratt et al. 1988);
Protozoa, 3 - 21 d, 0.0032 mg/l (Pratt et al. 1988).

Chlamydomonas reinhardtii:
1 - 2 d, 0.216 mg/l, lethal effect;
1 - 2 d, 0.0216 mg/l, change in cell number (Hersh & Crumpton
1987).

Lepomis macrochirus, 136 d, 0.020 mg/l, effect on food
consumption rate and reproduction (Kettle et al. 1987).
 
Other information of water organisms :
Algae: Microcystis aeruginosa: inhibition of cell
multiplication starts at 0.003 mg/l (Bringmann & Kühn 1976).

Algae:
Chlorococcum sp. 
(technical acid): 100 ppb:
50 % decrease in O2 evolution
50 % decrease in growth; measured as ABS (525 mu) after 10 days

Dunaliella tertiolecta (technical acid): 300 ppb:
50 % decrease in O2 evolution
50 % decrease in growth; measured as ABS (525 mu) after 10 days

Isochrysis galbana (technical acid): 100 ppb:
50 % decrease in O2 evolution
50 % decrease in growth; measured as ABS (525 mu) after 10 days

Phaeodactylum tricornutum (technical acid): 100 ppb:
50 % decrease in O2 evolution

Phaeodactylum tricornutum (technical acid): 200 ppb:
50 % decrease in growth; measured as ABS (525 mu) after 10 days
(Walsh 1972).

Periphyton ecosystem, inhibited production, 0.08 mg/l (Hamilton
et al. 1987).

Lemna minor, LC100, 27 d, 0.12 mg/l (Gunkel 1983).
 
Other information :
Not allowed to use in Sweden from 1.1.1990 (Anon. 1989).

References
2357Anon 1988. Concentrations of industrial organic chemicals measured in the environment: The influence of physico - chemical properties, tonnage and use pattern. Technical report no 29. European chemical industry ecology & toxicology centre, ECETOC. pp. 105.
2285Anon. 1989. Miljöfarliga ämnen - exempellista och vetenskaplig dokumentation. 303 p. Stockholm. Rapport från kemikalieinspektionen (KEMI) 10.
2283Anon.1986a. Evaluation of the OECD laboratory intercomparison testing on the determination of the partition coefficient n-octanol-water by reverse phase HPLC. Report. Fraunhofer-Institut für Umweltchemie und Ökotoxikologie.
1738Bandeen, J.D. & McLaren, R.D. 1976. Resistance of Chenopodium album to triazine herbicides. Can. J. Plant Sci. 56(2): 411 - 412.
148Birge, W.J. et al. 1979b. Toxicity of organic chemicals to embryo-larval stages of fish. EPA-560/11-79-007, U.S. Environmental Protection Agency, Washington, D.C.
147Birge, W.J., Black, J.A. Hudson, J.E. & Bruser, D.M. 1979a. Embryo-larval toxicity tests with organic compounds. In: Aquatic toxicology. ASTM STP 667. Marking, L.L. and Kimerle,R.A. (eds.) American Society for Testing and Materials, Philadelphia, pp. 131 - 147.
2521Birge, W.J., Black, J.A. & Ramey, B.A. 1981. The reproductive toxicology of aquatic contaminants. In: Saxena, J. & Fisher, F. (eds.) Hazard Assessment of Chemicals - Current Developments, Vol. 1, Academic Press, New York.
187Bringmann, G. & Kühn, R. 1976. Vergleichende Befunde der Schadwirkung wassergefährdender Stoffe gegen Bakterien (Pseudomonas putida) und Blaualgen (Microcystis aeruginosa). Gwf-Wasser-Abwasser 117(9).
2513Burkhard, N. & Guth, J.A. 1981. Chemical hydrolysis of 2-chloro-4,6-bis(alkylamino)-1,3,5-triazine herbicide and their breakdown in soil under the influence of adsorption. Pestic. Sci. 12: 45 - 52.
2515Dawson, G.W., English, C.I. & Petty, S.E. 1980. Physicochemical properties of hazardous waste constituents. Report of Battelle Pacific Northwest Laboratories to U.S. Environmental Protection Agency.
2512Esser, H.O., Dupuis, G., Ebert, E., Vogel, C. & Marco, G.J. 1975. s-Triazines. In: Kearney, P.C. & Kaufmann, D.D. (Eds.) Herbicides: Chemistry, Degradation and Mode of Action, Vol. 1, Marcel Dekker, Inc., New York, Basel, pp. 129 - 208.
1770Geyer, H. Scheunert, I. & Korte, F. 1985. The effects of organic environmental chemicals on the growth of the alga Scenedesmus subspicatus: A contribution to Environmental Biology. Chemosphere 14: 1355.
619Goswami, K.P. & Green, R.E. 1971. Microbial degradation of the herbicide atrazine and its 2-hydroxy analog in submerged soils. Environm. Sci. & Techn. 5(5): 426 - 429.
2518Gunkel, G. & Streit, B. 1980. Mechanism of bioaccumulation of a herbicide (atrazine, s-triazine) in a freshwater mollusc (Ancylus fluviatilis Müll.) and a fish (Coregonus fera J.). Water. Res. 14: 1573 - 1584.
2520Gunkel, G. 1981. Bioaccumulation of a herbicide (atrazine, s-triazine) in the whitefish (Coregonus fera J.): Uptake and distribution of the residue in fish. Arch. Hydrobiol. Suppl. 59 (2/3): 252 - 287.
1922Hamilton, P.B. et al. 1987. The impact of atrazine on lake periphyton communities, including carbon uptake dynamics using track autoradiography. Environ. Pollut. 46: 83.
2130Hersh, C.M. & Crumpton, W.G. 1987. Determination of growth rate depression of some green algae by Atrazine. Bull. Environ. Contam. Toxicol. 39:1041.
2517Jessee, J.A., Benoit, R.E., Hendricks, A.C., Allen, G.C. & Neal. J.L. 1983. Anaerobic degradation of cyanuric acid, cysteine and atrazine by a facultative anaerobic bacterium. Appl. Environ. Microbiol. 45(1): 97 - 102.
705Kenaga, E.E. 1979. Acute and chronic toxicity of 75 pesticides to various animal species. Down to earth 35(2): 25 - 31.
2131Kettle, W.D. et al. 1987. Diet and reproductive success of bluegill recovered from experimental ponds treated with Atrazine. Bull. Environ. Contam. Toxicol. 38: 47.
727Klaassen, H.E. & Kadoum, A.M. 1979. Distribution and retention of atrazine and carbofuran in fram pond ecosystems. Arch. Environ. Contam. Toxicol. 8: 345.
2127Krieger, K.A. et al. 1988. Effects of herbicides on stream aufwuchs productivity and nutrient uptake. Arch. Environ. Contam. Toxicol. 17: 299.
1759Ladonin, V.F. & Lunev, M.I. 1983. Determination of pesticide residues from the phytotoxic index. Zashch. Rast. (Moscow) 4: 28 - 29.
1589Lewis, R.J. & Sweet, D.V. 1984. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 83-107-4.
2450Li, W.,Merrill, D. E. & Haith, A. 1990. Loading functions for pesticide runoff. Research Journal WPCF, 62(1): pp. 16 - 26.
867Macek, K.J., Buxton, K.S., Sauter, S., Gnilka, S. & Dean, J.W. 1976b. Chronic toxicity of atrazine to selected invertebrates and fishes. U.S. Environmental Protection Agency, Duluth, MN, EPA 600/3-76-047, 49 pp.
2777Mackay, D. 1982. Correlation of bioconcentration factors. Environ. Sci. Technol., 16(5): 274 - 278.
2117Marchini, S. et al. 1988. Herbicidal Triazines: acute toxicity on Daphnia, fish, and plants and analysis of its relationships with structural factors. Ecotoxicol. Environ. Saf. 16: 148.
897Martin, H. 1968. Pesticide manual, British crop protection council, Clacks Farm, Boreley, Ombersley, Droitwich, Worcester, U.K.
1923Mayasich, J.M. et al. 1987. Growth responses of Nannochloris oculata Droop and Phaeodactylum tricornutum Bohlin to the temperature in unialgal and bialgal assemblage. Aquat. Toxicol. 10: 187.
1921Millie, D.F. & Hersh, C.M. 1987. Statistical characterizations of the atrazine-induced photosynthetic inhibition of Cyclotella meneghiniana (Bacillariophyta). Aquat. Toxicol. 10: 239.
1053Nishiuchi, Y. & Hashimoto, Y. 1967. Toxicity of pesticide ingredients to some fresh water organisms. Botyu-Kagaku 32: 5-11.
2511Nordic 1988. Environmental hazard classification of chemicals. Status report from the Joint Nordic Project, December 19, 1988, Kemikalieinspektionen, Solna.
2509OECD (VCI) 1977. Production figures and used patterns for some high volume chemicals. Paris, June 1977.
2102Pickering, Q., Carle, D.O., Pilli, A., Willingham, T. & Lazorchak, J.M. 1989. Effects of pollution on freshwater organisms. Journal WPCF 61 (6): 998 - 1042.
2129Pratt, J.R. et al. 1988. Effects of Atrazine on freshwater microbial communities. Arch. Environ. Contam. Toxicol. 17:449.
2510Rippen, G. 1988. Handbuch der Umwelt-Chemikalien. Stoffdaten, Prüfverfahren, Vorschriften. Ecomed. Landsberg/Lech, 2. Auflage.
2519Rudolph, P. & Boje, R. 1988. Ökotoxikologie nach dem Chemikaliengesetz. Glundlagen für die ökotoxikologische Bewertung von Umweltchemikalien. In: Rippen, G. (Ed.) Handbuch der Umweltchemikalien, II-1.2.1, Ecomed. Landsberg/Lech.
2516Torstensson, L. 1988. Bekämpningsmedel i den yttre miljön. Förekomst, spridning, effekter. SNV Rapport 3536, Solna, 154 pp.
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.
2514Wolfe, N.L. 1980. Determining the role of hydrolysis in the fate of organics in natural waters. In: Haque, R. (Ed.) Dynamics, Exposure and Hazard Assessment of Toxic Chemicals, Ann Arbor Sci., Michigan, pp. 163 - 178.

 
 
© Copyright Environmental Administration