www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


29.12.2025

Data bank of environmental properties of chemicals


Chemical
Aniline
CAS-number :
62-53-3
 
Synonyms :
aminobentseeni
aminobenzene
Aniliini
benzenamine
fenyyliamiini
phenylamine
 
Sumformula of the chemical :
C6H7N
EINECS-number :
2005393
 
Uses :
Aniline is used in the manufacture of polyurethanes (MDI),
rubber processing, chemicals, pesticides, fibers, dyes and
pigments, hydroquinone, pharmarceuticals etc (Chemical 
Profile 1985).
 
Odor :
Characteristic.

Hedonic tone: pungent.

Human odour perception: non perception: 0.34 mg/m3
                            perception: 0.37 mg/m3
Human reflex response: adverse response: 0.07 mg/m3
Animal chronic exposure: adverse effect: 0.05 mg/m3
(Stern 1968).
 
Molecular weight :
93.14
 
Spesicif gravity (water=1) :
1.02 
 
Vapor density (air=1) :
3.22 
 
Conversion factor, 1 ppm in air=_mg/m3 :
3.87  mg/m3
 
Conversion factor, 1 mg/m3 in air=_ppm :
0.259  ppm
 
Vapor pressure, mmHg :
35 °C
0.3  20 °C
  --
0.489  at 25 °C, Daubert & Danner 1985
 
Water solubility, mg/l :
34000 
36070  at 25 °C, Seidell 1941
 
Melting point, °C :
-6 
 
Boiling point, °C :
184  184-186 °C
186 
 
pKa :
4.596  Perrin 1972
 
Log octanol/water coefficient, log Pow :
0.9  ANON 1986
0.95  Anon 1988
0.9  Sangster 1989
 
Log soil sorption coefficient, log Kom :
1.17  Sabljic 1987
 
Henry's law constant, Pa x m3/mol :
0.11  Anon 1988
 
Volatilization :
Using a measured Henry's law constant of 1.2x10-4 atmxm3/mole
the estimated half-life for evaporation of aniline from a model
river 1 m deep with a 1 m/sec current and a 3 m/sec wind is
12 days (Yoshida et al. 1983) (Lyman et al. 1982).

When an environmental test system containing soil, plants,
simulated photoperiods, rain and wind was dosed with 14C
labeled aniline and left for 30 days, 24% of the radioactivity
was found in the air compartment, of which 5% was identified
as CO2 (Figge et al. 1983).

The OECD generic aquatic-terrestrial environment 14% of applied
aniline partitioned to the air phase (Yoshida et al. 1983).
 
Adsorption/desorption :
Aniline has a pKa value of 4.596 and therefore exists partially
as a cation. 
Therefore the soil adsorption is not only a
funcition of percent organic carbon but also the pH of the soil
increasing with the percentage organic carbon and decreasing
with pH. 
Additionally adsorption is correlated with the clay
content of the soil. 
For 14 soils the soil/water partition
coefficient (Kd) averaged 0.074 and the Koc value averaged
1.86 (Moreale & Bladel 1976).

The Koc values in two silt loams were 130 and 410 with the
higher value occurring in the more acidic soil, and averaged
25.5 in seven agricultural soils (Pillai et al. 1982).

Anilines Koc to colloidal organic carbon from ground water is a
relatively high 3900 and this effectively increases aniline
solubility and leaching into ground water (Means et al. 1982).

The adsorption constant for adsorption to H-montmorillonite (pH
8.35) and Na-montmorillonite (pH 6.8) is 1300 and 130 (Bailey 
et al. 1968).
 
Other bindings :
Aromatic amines including aniline are known to form covalent
bonds with humic materials, adding to quinone-like structure
followed by slow oxidation (Parris 1980).
 
Mobility :
In a generic aquatic-terrestrial environment, 0.26% was
distributed in soil and 1.23% in sediment. 
The sediment-water
distribution constants ranged from approx 3 to 900, which is
higher than predicted and possibly reflects a component of
chemical binding (Yoshida et al. 1983).
 
Photochemical degradation in air :
Aniline has a strong UV adsorption band at 285 nm which extends
above 290 nm and is therefore a candidate for direct photolysis
by sunlight (Howard 1989).

Aniline is oxidized on exposure to sunlight in air, forming
products such as hydrazobenzene, 4-aminodiphenylamine,
2-aminodiphenylamine, benzidine and azobenzene (Zechner et al 
1976) (Zepp et al. 1981).

In the atmosphere aniline inhibits the conversion of NO to NO2
and photochemical smog formation (Gitchell et al. 1975) 
(NIOSH 1983).

The half-life for direct photolysis of aniline inthe atmosphere
has been estimated to be 2.1 days based on a measured reaction
rate constant of 0.32 day-1 (Mill & Davenport 1986).

The half-life for aniline vapor reacting with photochemically
generated hydroxyl radicals in the atmosphere has been
estimated  to be 3.3 hr, based on a measured reaction rate
constant of 1.17x10-10 cm3-molecule/mole at 25 °C and assuming
an avg hydroxyl radical concn of 5x10+5 molecules/cm3
(Atkinson et al. 1987).
 
Photochemical degradation in water :
When aniline in water is irradiated in July sunlight, 19.3%
degradation occurred in 5 hours; however the rate decreased
with increasing concentration (Kondo 1978).

One investigators report only 0.7% oxidant formation after 4 hr
exposure to sunlight, and a half-life of 0.2 hr during exposure
to light >290 nm in the laboratory (Draper & Crosby 1983) 
(Kotzias et al. 1982).

Humic acid photosensitize the reaction of aniline in water. 
The
half-life in distilled water was 1 week, whereas it was 4-8 hr
in Georgia's May sunshine in the near-surface black water from
the Aucilla River (Zepp et al. 1981).

The presence of various species of algae can increase the
photodegradation rates by factors of 4-50 over that in
distilled water (Zepp & Schlotzhauer 1983).

When aniline is adsorbed on silica gel 46.5% mineralitazion
occurs in 17 hr upon irradiation with light >290 nm (Freitag 
1982).

In the presence of nitrite ions, photolytic products formed are
mutagenic using the Ames assay (Suzuki et al. 1983).
 
Aerobic degradation in soil :
Aniline is degraded by many common species of bacteria and
fungi in soil and acetanilide, 2-hydroxyacetanilide,
4-hydroxyaniline and catechol are reported metabolites
(Howard 1989).

The rate of degradation in four soils reached a maximum value
after one week and declined to a low value after 2 week. 
After
10 weeks 16-26% of the aniline was mineralized (Suess et al 
1978).
 
Aerobic degradation in water :
In an oligotrophic lake water sample 75-99% mineralization of
aniline occurred in 21 days and 40-60% of the aniline degraded
in 1 day in river water and seawater when incubated at 30 °C
(Subba-Rao 1982) (Kondo 1978).

Degradation occurred in Nile River water after 3-day lag
(El-Dib & Aly 1976).

The half-life in the Rhine River was 2.30 days as determined by
concentration reduction between sampling points (Zoeteman 
1980).

Biodegradation removed 56% of anions in a week and was the most
significant removal process for aniline in water from a
eutrophic pond, with a substantial portion being mineralized to
CO2 within this 1-week period (Brown & Laboureur 1983).
 
Total degradation in soil :
Decomposition period by a soil microflora: 4 days 
(Verschueren 1983).
 
Other information of degradation :
Degradation of aniline is frequently 90-100% in laboratory
tests utilizing activated sludge or sewage seed lasting from 3
to 28 days with acclimation not always being required
(Howard 1989).

It is completely degraded by asoil incolum in 4 days and by
bacteria in river mud in 20 days (Calamari et al. 1980).

Amendation of the pond with sewage sludge greatly increased the
rate of degradation. 
The major pathway of biodegradation
involved oxidative deamination to catechol, which was further
metabolized to CO2 whereas minor pathways involved reversible
acylation to form acetanilide and anilide (Lyons et al 1984).

In <1 year 39% of aniline in Rhine River water was removed by
bank filtration, which would involve both biodegradation and
adsorption (Zoeteman et al. 1980).

Although aniline is amenable to degradation in anaerobic
reactors, only 19% degradation was reported in 53 days,
including a 28-day lag with a sewage inocolum forming
acetanilide and 2-methylquinoline as products and no
degradation occurred in an anaerobic reactor in 110 days with a
2 to 10 day retention time using an inoculum maintained on
acetate (Howard 1989).

Aniline was completely degraded in 7 days using composting
(Howard 1989).
 
Other information of bioaccumulation :
The log BCF aniline in two species of fish are 0.78 and <1.0,
which demostrates that aniline does not bioconcentrate in fish
(Ly & Metcalt 1975) (Freitag 1982).
 
LD50 values to mammals in oral exposure, mg/kg :
250  orl-rat, Lewis & Sweet 1984
195  orl-dog, - " -
 
LD50 values to mammals in non-oral exposure , mg/kg :
254  skn-cat, Lewis & Sweet 1984
 
LDLo values to mammals in non-oral exposure , mg/kg :
820  skn-rbt, Lewis & Sweet 1984
150  unk-man, -"-
 
Health effects :
Man: severe toxic effects: 80 ppm, 60 min
symptoms of illness: 20 ppm
unsatisfactory: > 10 ppm
(Verschueren 1983).
 
Mutagenicity :
Mutagenicity in the Salmonella test: neg., < 0.005 revertant
colonies/nmol; < 70 revertant colonies at 1 mg/plate 
(McCann et al. 1975).
 
LD50 values to birds in oral exposure, mg/kg :
562  orl-Agelaius phoeniceus
1000  =,>1000, orl-Sturnus vulgaris
750  orl-Coturnix coturnix
562  orl-Passer domesticus
  Schafer et al. 1983
 
Effects on amphibia :
Amphibian: lethality and teratogenicity to early embryonic
stages of South African clawed frog, Xenopus laevis:
                            day
conc. mg/l       1           2          3          4
                A/S   %     A/S   %    A/S   %    A/S    %
0               0/50  0     0/50  0    0/50  0    0/50   0
10              0/50  0     0/47  0    4/36  11   4/36   11
50              1/50  2     3/48  6    3/48  6    3/48   6
                (A/S = abnormals/survivors)
(Dumont et al. 1979).

Mexican axoloth (3 - 4 weeks after hatching):48 hr LC50:440 mg/l
Clawed toad (3 - 4 weeks after hatching): 48 hr LC50: 560 mg/l
(Slooff & Baerselman 1980).
 
Effects on anthropods :
Tanytarsus dissimilis: LC59, 2 days, > 219 mg/l 
(Holcombe et al. 1987).
 
Maximum longterm immission concentration in air for plants,mg/m3 :
0.24  VDI 2306
 
Maximum longterm immission concentration in air for plants,ppm :
0.2  VDI 2306
 
Effects on microorganisms :
Bacteria: Escherichia coli: no effect at 1 g/l 
(Bringmann & Kühn 1976).

Toxicity threshold (cell multiplication inhibition test):
bacteria: Pseudomonas putida: 130 mg/l
(Bringmann & Kühn 1980).
 
Effects on wastewater treatment :
Degradation by Aerobacter: 500 mg/l at 30 °C:
                parent: 100 % ring disruption in 54 hours
                mutant: 100 % ring disruption in 12 hours
                (Verschueren 1983).
 
EC50 values to algae, mg/l :
19  96hr, rpd, Selenastrum capricornutum
  Calamari et al. 1982
 
LOEC values to algae, mg/l :
0.16  Microcystis aeruginosa, Bringmann & Kühn
  1976
  --
8.3  rpd,schr,Scenedesmus quadricauda
  Bringmann & Kühn 1980a
 
NOEC values to algae, mg/l :
10  rpd,schr,Selenastrum capricornutum
  Slooff et al. 1983
 
LC50 values to crustaceans, mg/l :
0.55  48 hr, Daphnia magna, Canton & Adema
  1978
0.1  48hr, Daphnia pulex
0.68  48hr, Daphnia cucullata
  --
68  48hr, Asellus aquaticus, Slooff 1983
112  48hr, Gammarus pulex, Slooff 1983
 
EC50 values to crustaceans, mg/l :
0.66  14d, rpd, Daphnia magna
  Hattori et al. 1984
  --
0.25  2d, Daphnia magna
  Holcombe et al. 1987
 
LC50 values to fishes, mg/l :
20  96 hr, Salmo gairdneri, Calamari et al.
  1980
  --
8.2  7 d, Salmo gairdneri, Abram & Sims 1982
  --
32  32 - 33, 96hr, Branchydanio rerio
33 
61  61 - 78, 48hr, Leuciscus idus
78  Wellens 1982
  --
43  48hr, Salmo gairdneri, Slooff et al.1983
  --
36.3  act,Salmo gairdneri,Hodson et al. 1984
  --
187  4d, Carassius auratus
78.4  4d, Catostomus commersoni
49  4d, Lepomis macrochirus
40.5  4d, Salmo gairdneri
77.9  4d, Pimephales promelas
  Holcombe et al. 1987
  --
134  96 hr, Pimephales promelas, Brooke et al. 1984
  --
75.5  96 hr, Pimephales promelas
114  96 hr, Pimephales promelas, Geiger et al. 1990
 
EC50 values to fishes, mg/l :
134  96 hr, mbt, Pimephales promelas, Brooke et al. 1984
  --
112  96 hr, mbt, Pimephales promelas, Geiger et al. 1990
 
Effects on physiology of water organisms :
Inhibition of photosynthesis of a fresh water non-axenic
uni-algal culture of Selenastrum capricornutum:
at   10 mg/l: 90 % carbon-14 fixation (vs controls)
at  100 mg/l: 34 % carbon-14 fixation (vs controls)
at 1000 mg/l: 3 % carbon-14 fixation (vs controls)
(Verschueren 1983).

Aquatic community; 4 days, 1 - 300 mg/l; stress effect
(observed physiological tension in animals or plants)
(Yount & Shannon 1987).
 
Other information of water organisms :
EC50, 24hr, 190 mg/l, rpd, Tetrahymena pyriformis 
(Yoshioka et al. 1985).

Protozoa: ciliate (Tetrahymena pyriformis): 24 hr LC100: e/l 
(Schultz et al. 1978).

Algae: Scenedesmus: toxic: 10 mg/l
crocystis aeruginosa: inhibition of cell
ultiplication starts at 0.16 mg/l; LD50 20 ppm
(Bringmann & Kühn 1976, Verschueren 1983).

Arthropoda: Daphnia: toxic: 0.4 mg/l 
(Bringmann & Kühn 1980).

Toxicity threshold (cell multiplication inhibition test):
green algae (Scenedesmus quadricauda): 8.3 mg/l
protozoa (Entosiphon sulcatum): 24 mg/l
protozoa (Uronema parduczi): 91 mg/l
(Bringmann & Kühn 1980).

Aplexa hypnorum; LC50, 4 days, > 219 mg/l 
(Holcombe et al. 1987).

LC50, 48hr, 450 mg/l, Tubificidae
LC50, 48hr, 175 mg/l, Chironomus gr. thummi
LC50, 48hr, 760 mg/l, Erpobdella octoculata
LC50, 48hr, 800 mg/l, Lymnaea stagnalis
LC50, 48hr, 155 mg/l, Dugesia cf. lugubris
LC50, 48hr, 406 mg/l, Hydra oligactis
LC50, 48hr, 150 mg/l, Corixa punctata
LC50, 48hr, 235 mg/l, Ischura elegans
LC50, 48hr, 64 mg/l, Nemoura cinerea
LC50, 48hr, 220 mg/l, Cloeon dipterum
(Slooff 1983)

References
4Abram F.S.H. & Sims, I.R. 1982. The toxicity of aniline to rainbow trout. Water Res. 16: 1309.
2349Alexander, M. & Lustigman, B.K. 1966. Effect of chemical structure on microbial degradation of substituted benzenes. J. Agr. Food Chem. 14: 410 - 413.
2357Anon 1988. Concentrations of industrial organic chemicals measured in the environment: The influence of physico - chemical properties, tonnage and use pattern. Technical report no 29. European chemical industry ecology & toxicology centre, ECETOC. pp. 105.
2283Anon.1986a. Evaluation of the OECD laboratory intercomparison testing on the determination of the partition coefficient n-octanol-water by reverse phase HPLC. Report. Fraunhofer-Institut für Umweltchemie und Ökotoxikologie.
3158Atkinson, R. 1987. Inter. J. Chem. Kinet. 19:799-828.
3159Bailey, G.W. et al. 1968. Soil Sci Soc. Amer. Proc. 32:222-34.
187Bringmann, G. & Kühn, R. 1976. Vergleichende Befunde der Schadwirkung wassergefährdender Stoffe gegen Bakterien (Pseudomonas putida) und Blaualgen (Microcystis aeruginosa). Gwf-Wasser-Abwasser 117(9).
188Bringmann, G. & Kühn, R. 1980a. Comparison of the toxicity thresholds of water pollutants to bacteria, algae and protozoa in the cell multiplication inhibition test. Water Res. 14: 231 - 241.
189Bringmann, G. & Kühn, R. 1980b. Bestimmung der biologischen Schadwirkung wassergefahrdender Stoffe gegen Protozoen. II. Bakterienfressende Ciliaten, Z. Wasser/Abwasser Forsch. 1: 26 - 31.
3295Brooke, L. T. et al. 1984. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas); Vol 1. Center for Lake Superior Environmental Studies University of Wisconsin-Superior, Superior, Wisconsin, U.S.A.
3160Brown, D & Laboureur, P. 1983. Chemosphere 12:405-14.
233Calamari, D., Galassi, S. & Setti, F. 1982a. Evaluating the hazard of organic substances on aquatic life: The paradichlorobenzene example. Ecotoxicol. Environ. Safety 6: 369 - 378.
235Calamari, D., DaCasso, R., Galassi, S., Provini, A. & Vighi, M. 1982b. Estimating the hazard of eight amines on aquatic life. In: Principles for the interpretation of the results of testing procedures in ecotoxicology. Report EUR 7549 EN/FR.
234Calamari, D., DaCasso, R., Galassi, S., Provini, A. & Vighi, M. 1980. Biodegradation and toxicity of selected amines on aquatic organisms. Chemosphere 9: 753.
241Canton, J.H. & Adema, D.M.M. 1978. Reproducibility of short-term and reproduction toxicity experiments with Daphnia magna and comparisons of the sensitivity of Daphnia magna with Daphnia pulex and Daphnia cucullata in short-term experiments. Hydrobiologia 59(2): 135 - 140.
3161Chemical Marketing Reporter. 1985. Chemical Profile; 7 Sept.
2994Daubert, T. E. and Danner, R. P. 1985. Data Compilation Tables of Properties of Pure Compounds. pp 450. American Institute of Chemical Engineers.
3091Draper, W. M. & Crosby D. G. 1983. Arch. Environ. Contam. Toxicol. 12: 121 - 126
1862Dumont, J.N. et al. 1979. Toxicity and teratogenicity of aromatic amines to Xenopus laevis. Bull. Environm. Contam. Toxicol. 22: 159 - 166.
3162El-Dib, M. A. & Aly, A. O. 1976. Water Res. 10:1055-9.
3163Figge, K. et al. 1983. Regul. Toxicol. Pharmacol. 3:199-215.
3164Freitag, D. et al. 1982. Ecotox. Environ. Safety. 6:60-81.
3297Geiger, D. L. et al. 1990. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas) Vol 5. Center for Lake Superior Environmental Studies, University of Winsconsin-Superior, Superior, Winconsin, U.S.A. 332.
3094Gitchell. A. et al. 1974. J. Air Pollut. Control Assoc. 24: 357 - 361.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
552Hattori, M., Senoo, K., Harada, S., Ishizu, Y. & Goto, M. 1984. The Daphnia reproduction test of some environmental chemicals. Seitai Kagaku 6(4): 23 - 27.
1855Hockenbury, M.R. & Grady,C.P.L. Jr. 1977. Inhibition of nitrification-effects of selected organic compounds. JWPCF, May.
1765Hodson, P.V., Dixon, D.G. & Kaiser, K.L.E. 1984. The measurement of median lethal doses (LD50s) as a rapid indication of contaminant toxicity to fish. Environ. Toxicol. Chem. 3: 243 - 254.
1891Holcombe, G.W. et al. 1987. Simultaneous multiple species testing: acute toxicity of 13 chemicals to 12 diverse freshwater amphibian, fish, and invertebrate families. Arch. Environ. Contam. Toxicol. 16: 697.
3047Howard, P. H. 1989. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. I: Large Production and Priority Pollutants. Lewis Publishers, Inc. Chelsea. pp 574.
1850Knoevenagel, K. & Himmelreich, R. 1976. Degradation of compounds containing carbon atoms by photooxidation in the presence of water. Arch. Environ. Contam. Toxicol 4(4): 324 - 333.
3165Kondo, M. 1978. Simulation studies of degradation of chemicals in the environment: simulation studies of degradation of chemicals inthe water and soil; Environment agengy. Office of health studies Japan.
3166Kotzias, D. et al. 1982. Naturwissenschaften 69:444-5.
1589Lewis, R.J. & Sweet, D.V. 1984. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 83-107-4.
861Lu, P.Y. & Metcalt, R. 1975. Environmental fate and biodegradability of benzene derivates as studied in a model aquatic ecosystem. Environ. Health Perspect. 10: 269 - 284.
2960Lyman, W. J. et al. 1982. Handbook of Chemical Property Estimation Methods. Environmental behavior of organic compounds. McGraw-Hill New York.
3167Lyons, C. D. et al. 1984. Appl. Environ. Microbiol. 48:491-6.
912McCann, J. et al. 1975. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals, Proc. Nat. Acad. Sci. USA, 72(12): 5135-5139 Medical Sciences, Dec.
3168Means, J. C. 1982. Amer. Chem. Soc. 186th Natl. Mtg. 23:250-1.
3169Mill, T. & Davenport, J. 1986. ACS Div. Environ. Chem. 192nd Natl. Mtg. 26:59-63.
3170Moreale, A. & van Bladel, R. 1976. J. Soil Sci 27:48-57.
3171NIOSH. 1983. National Occupational Exposure Survey. (NOES).
3172Parris, G. E. 1980. Environ. Sci Technol. 14:1099-105.
3173Perrin, D. D. 1972. Dissociation constants of organic bases in aqueous solution; IUPAC Chemical Data Series; Supplement; London Buttersworth.
3174Pillai, P. et al. 1982. Chemosphere 11:299-317.
2324Sabljic, A. 1987. On the prediction of soil sorption coefficients of organic pollutants from molecular structure: application of molecular topology model. Environ. Sci. Technol. 21: 358 - 366.
3104Sangster, J. 1989. Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data, Vol 18, No. 3: 1111 - 1229.
1743Schafer , E.W.Jr., Bowles, W.A.Jr., Hurlbut, J. 1983. The acute oral toxicity, repellency and hazard potential of 993 chemicals to one or more species of wild and domestic birds. Arch. Environ. Contam. Toxicol. 12: 355 - 382.
1861Schultz, T.W., Kyte, L.M. & Dumont, J.N. 1978. Structure-toxicity correlations of organic contaminants in aqueous coal-conversion effluents. Arch. Environ. Contam. Toxicol. 7: 457 - 463.
2646Seidell, A. 1941. Solubilities of Organic Compounds. Voll II., 3rd ed. Van Nostrand Co., New York.
1304Slooff, W., Canton, J.H. & Hermens, J.L.M. 1983. Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds. I (sub)acute toxicity tests. - Aquatic toxicology 4: 113 - 128.
1167Slooff, W. & Baerseman, R. 1980. Comparison of the usefulness of the Mexican axolotl (Ambystoma mexicanum) and the clawed toad (Xenopus laevis) in toxicological bioassays. Bull. Environm. Contam. Toxicol. 24: 439 - 443.
1302Slooff, W. 1983. Benthic macroinvertebrates and water quality assessment: some toxicological considerations. Aquat. Toxicol. 4: 73.
1598Stern, A.C. 1968. Air Pollution. Vol. 3, Academic Press N.Y., London. 661 pp.
2346Subba-rao, R.V., Rubin, H.E. & Alexander, M. 1982. Kinetics and extent of mineralization of organic chemicals at trace levels in freshwater and sewage. Appl. Environ. Microbiol. 43: 1139 - 1150.
3175Suess, A. et al. 1978. Bayerisches Landwireschaftersches Jahrbuch. 55:565-70.
3176Suzuki, J. et al. 1983. Bull. Environ. Contam. Toxicol. 31:79-84.
1599VDI 2306. VDI-Kommission Reinhaltung der Luft. Maximale Immissions-Konzentrationen (MIK). Organische Verbildungen.
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.
1531Wellens, H. 1982. Comparison of the sensitivity of Branchydanio rerio and Leucistus idus by testing the fish toxicity of chemicals and wastewaters. Z. Wasser Abwasser Forsch. (Ger.) 15: 49.
3177Yoshida, K. et al. 1983. Ecotox. Environ. Safety 7:179-90.
1766Yoshioka, Y., Ose, Y. & Sato,T. 1985. Testing the toxicity of chemicals with Tetrahymena pyriformis. Sci. Total. Environ. 43:149.
1924Yount, J.D. & Shannon, L.J. 1987. Effects of aniline and three derivatives on laboratory microecosystems. Environ. Toxicol. Chem. 6: 463.
3178Zechner, J. et al. 1976. Z. Phys. Chem. 102:137-50.
3179Zepp, R. G. & Schlotzhauer, P. F. 1983. Environ. Sci Technol. 17:462-8.
3180Zepp, R. G. et al. 1981. Chemosphere 10:109-17.
3181Zoeteman, B. C. F. et al. 1980. Chemosphere 9:231-49.

 
 
© Copyright Environmental Administration