www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


9.12.2019

Data bank of environmental properties of chemicals


Chemical
1,2,4-Trichlorobenzene
CAS-number :
120-82-1
 
Synonyms :
1,2,4-trichlorobenzol.
1,2,4-triklooribentseeni
as-trichlorobenzene
asym-trichlorobenzene
Benzene, 1,2,4-trichloro-
unsym-trichlorobenzene
 
Sumformula of the chemical :
C6H3Cl3
EINECS-number :
2044280
 
Uses :
Solvent in chemical manufacturing; dyes and intermediates;
dielectric fluid; synthetic transformer oils; insecticides;
herbicides; heat transfer medium; degreaser; lubricant.
 
State and appearance :
Colourless, stable, refractive liquid; insoluble in water. -

Solid colourless crystals (Sax 1986).
 
Odor :
Lower odour threshold: 0.88 - 2.4 ppm. -  
No odour at lowest
level, definite odour at higher level (Sax 1986).
 
Molecular weight :
181.44
182
 
Spesicif gravity (water=1) :
1.454 
 
Vapor density (air=1) :
1.463 
 
Water solubility, mg/l :
36  20 °C, Anon. 1989
30  25 °C, Sax 1986
31.3  25 °C, Banerjee 1984
 
Melting point, °C :
17 
16.95  Suntio et al. 1988
17  MITI 1992
 
Boiling point, °C :
213 
210  MITI 1992
 
Flashing point, °C :
110 
93.3 
 
Log octanol/water coefficient, log Pow :
4.23  Sax 1986
3.98  Chin et al. 1986
4.18  Anon 1986
3.93  3.93 - 4.67, Sabljic 1987
4.67 
4.26  Chin et al. 1986
4.1  Anon 1988
4.05  Schwarzenbach & Westall 1981
4.27  Yalkowsky et al. 1979
3.93  Konemann et al. 1979
3.97  Wateral et al. 1982
3.98  Miller et al. 1984
4.02  Chiou 1985
 
Henry's law constant, Pa x m3/mol :
108.4 
240  Anon 1988
366.6  Suntio et al 1988
 
Mobility :
Equilibrium distribution:
        mass %
air     96.60
water    1.16
solid    2.24
(Anon 1988)
 
Photochemical degradation in air :
Photooxidation half-life in air:
53.5d - 5.4d, based upon measured rate data for the vapor phase 
reaction with hydroxyl radicals in air (Howard 1991).
 
Other reactions in atmosphere :
In the troposphere reaction with OH-radicals: half-life 30 days
(Rinke & Zetzsch 1984).
 
Hydrolysis in water :
No hydrolysis in normal environmental conditions (Åkermark et
al.
1976).

First-order hydrolysis half-life:
3.4yr, scientific judgement based upon overall rate constant 
(2.3X10-5 hr-1) at pH 7 and 25 °C (Howard 1991).
 
Half-life in air, days :
53.5  53.5d - 5.4d,
5.4  based upon photooxidation half-life in air.
  Howard 1991
 
Half-life in soil, days :
180  6mo - 4w,
28  scientific judgement based upon unacclimated aerobic soil grab sample data.
  Howard 1991
 
Half-life in water, days :
180  6mo - 4w,
28  in surface water: scientific judgement based upon estimated unacclimated aqueous aerobic biodegradation half-life.
360  1yr - 8w,
56  in ground water: scientific judgement based upon estimated unacclimated
  Howard 1991
 
Aerobic degradation in water :
Aerobic half-life:
6mo - 4w, scientific judgement based upon unacclimated aerobic 
soil grab sample data (Howard 1991).
 
Anaerobic degradation in water :
Anaerobic half-life:
2yr - 16w, scientific judgement based upon estimated 
unacclimated aqueous aerobic biodegradation half-life (Howard 
1991).
 
Total degradation in water :
Biodegradation:
0% by BOD
period: 14d
substance: 100 mg/l
sludge: 30 mg/l
(MITI 1992)
 
Ready biodegradability :
Not easily degradable in Closed bottle test (BUA 1988).
Not easily degradable (Anon. 1989).
Confirmed to be non-biodegradable (Anon. 1987).
 
Other information of degradation :
Photochemical dechlorination forms 1,3-dichlorobenzene and
1,4-dichlorobenzene (Åkerman et al. 1976).

Degradation in anaerobic conditions has not been shown
(BUA 1988).

Will volatilize from water fairly rapidly: half-life of 45
minutes when aerated; 100 ppm completely volatized from
unaerated distilled water in 2 days. 50 mg/l in aerated mixed
cultures of aerobic microorganisms - measurable level still
detected after 9 days. 
Octanol/water partition coefficient
suggests the possibility of adsorption to organic material. 1.7
mg/l with unacclimatized industrial wastewater microorganisms
degraded 14 % in 24 hours, 36 % at 72 hours, and 43 % in 7
days; an initial concentration of 2.6 mg/l decreased 28 % in 7
days. 
Under environmental conditions - unacclimated
microorganisms and varying carbon sources - a much lower rate
of degradation is expected. 
Hydrolysis probably will not occur;
oxidation may be possible, but unlikely to be important (Sax
1986).
 
Metabolism in fishes :
Bluegills fed Daphnia containing 1,2,4-TCB showed only slight
increase in body burden of compound, 5 % of that during
exposure to same level in the water (Sax 1986).
 
Bioconcentration factor, fishes :
850  BUA 1988
  --
182  28d, steady-state, 0.003 mg/l
  Lepomis macrochirus, Sax 1986
  --
398  32d, Pimephales promelas, USEPA 1984
  --
420  420-1140, 6w, Cyprinus carpio, conc 0.05 mg/l,
1140 
120  120-1320, 6w, Cyprinus carpio, conc 0.005 mg/l,
1320  MITI 1992
 
Other information of bioaccumulation :
Medium level accumulation (Anon. 1989).

Confirmed to be accumulated on a medium level (Anon. 1987).

Bioconcentration factor (crustaceans):
142, Daphnia magna, 0.003 mg/l, equilibrium 
(Sax 1986).
 
LD50 values to mammals in oral exposure, mg/kg :
756  orl-rat, Lewis & Sweet 1984
300  orl-mus
 
LDLo values to mammals in non-oral exposure , mg/kg :
500  ipr-mus, Sax 1986
 
Health effects :
The amount of TCB necessary to induce a toxic reaction via
application to the skin is quite high. 3 to 5 ppm causes minor eye
and respiratory irritation. -  
Severe skin and eye
irritation. -  
CNS stimulation, headache, dermatitis, skin,
eye, and throat irritation (Sax 1986).

Skin and eye irritation data:
skn, rbt, 1950 mg/l, 13 W-I, moderate (Sax 1986).
 
Carcinogenicity :
No carcinogenic effect shown (BUA 1988).
 
Mutagenicity :
Negative in mutagenicity tests (BUA 1988).
 
Effects on anthropods :
LC50, 2 d, 0.93 mg/l, Tanytarsus dissimilis (Holcombe et al.
1987).
 
Effects on wastewater treatment :
BOD test inhibited by >/= 5 mg/l (Sax 1986).
 
EC50 values to microorganism, mg/l :
280  0.5 hr, Resazurin reduction, methanol
110  0.5 hr, Resazurin reduction, ethanol
50  0.5 hr, Resazurin reduction, acetone
500  >500, 0.5 hr, Resazurin reduction, DMSO
  Thompson et al. 1986
 
EC50 values to algae, mg/l :
8.4  96hr, grw, Scenedesmus subspicatus
  Geyer et al. 1985
  --
1.4  96hr, growth, Selenastrum capricornutum
3.9  3hr, photosynthesis, Selenastrum
  capricornutm, Calamari et al. 1983
  --
8.9  Skeletonema, growth, USEPA 1980
  --
35.5  96hr, Selenastrum capricornutum
  chlorophyll destruction
36.7  96hr, S. capricornutum
  decreased cell numbers
8.7  96hr, Skeletonema costatum
  chlorophyll inhibition
8.93  96hr, S. costatum
  decreased cell numbers
  Sax 1986
 
LC50 values to crustaceans, mg/l :
50  48 hr, Daphnia magna, LeBlanc 1980
  --
0.56  16d, Daphnia magna
  Hermens et al. 1984
  --
3.02  4d, Orconectes immunis
  Holcombe et al. 1987
  --
1.2  24hr, Daphnia magna, Calamari et al.
  1983
  --
2.09  48hr, unfed, Daphnia magna
1.68  48hr, fed, Daphnia magna
  USEPA 1984
 
EC50 values to crustaceans, mg/l :
0.27  16d, reproduction, Daphnia magna
0.46  16d, growth, Daphnia
  Hermens et al. 1984
  --
0.45  14d, rpd, Daphnia magna
  Calamari et al. 1983
  --
3.39  2d, mbt, Daphnia magna
  Holcombe et al. 1987
  --
1.7  1.7 - 2.1, 48hr, Daphnia magna
2.1  Richter et al. 1983
  --
3.2  24hr, Artemia, Abernethy et al. 1986
  --
2.6  96hr, Nitocra, Bengtsson et al. 1983
  --
0.45  96hr, Mysidopsis, USEPA 1980
  --
50.2  48hr, Daphnia magna, Sax 1986
 
NOEC values to crustaceans, mg/l :
0.32  16d, srv, Daphnia magna
0.1  16d, rpd, Daphnia magna
  Hermens et al. 1984
  --
0.363  0.363 - 0.694, 28d, Daphnia
0.694  USEPA 1984
 
LC50 values to fishes, mg/l :
0.71  48 hr, Salmo gairdneri,
  Calamari et al. 1983
  --
2.4  14d, Poelicia reticulata,Könemann 1979
  --
2.9  96hr, Pimephales promelas
  Veith et al. 1983
  --
3.4  96hr, Lepomis macrochirus
  Buccafusco et al. 1981
  --
21  96hr, Cyprinodon variegatus
  Heitmuller et al. 1981
  --
3.02  4d, Lepomis macrochirus
3.01  4d, Pimephales promelas
1.32  4d, Salmo gairdneri
  Holcombe et al. 1987
  --
2.76  4d, Pimephales promelas
  Carlson 1987
  --
1.95  48hr, Salmo gairdneri
6.3  48hr, Brachydanio rerio
  Calamari et al. 1983
  --
2.9  96hr, Pimephales, Veith et al. 1983
  --
3.4  96hr, Lepomis, Buccafusco et al. 1981
  --
0.7  Leuciscus, Knie et al. 1983
  --
2.4  7d, Poecilia, Könemann 1981
  --
1.5  Salmo gairdneri, Sax 1986
2.87  Pimephales promelas
3.36  96hr, Lepomis macrochirus
21.4  96hr, Cyprinodon variegatus
  --
2.76  96hr, flow-through, Pimephales promelas
1.52  96hr, Salmo gairdneri
  USEPA 1984
  --
12.3  48hr, Oryzias latipes, MITI 1992
  --
2.99  96 hr, Pimephales promelas, Geiger et al. 1990
 
EC50 values to fishes, mg/l :
1.27  96hr, Salmo gairdneri, USEPA 1984
 
LOEC values to fishes, mg/l :
0.41  30d, Pimephales, embryo-larvae
  LeBlanc 1984
  --
0.18  21d, Branchydanio, BUA 1988
 
NOEC values to fishes, mg/l :
0.499  0.499 - 1.008, 32d, Pimephales promelas
1.008  USEPA 1984
 
Other information of water organisms :
EC50 (24 hr) 0.91 mg/l, rpd, Tetrahymena pyriformis (Yoshioka et
al. 1985).

Aplexa hypnorum, LC50, 4 d, 3.16 mg/l (Holcombe et al. 1987). 
0.286 mg/l; 0.705 mg/l, Pimephales promelas, chronic value,
early life stage test. -  0.222 mg/l, Cyprinodon variegatus,
chronic value, early life stage test (Sax 1986).
 
Other effects on aquatic ecosystems :
LOEC, marine model ecosystem: 0.04 mg/l, mollucs being the most
sensitive organisms (Tagatz et al. 1985).
 
Other information :
Theoretical division:
95.7 % in air; 1.2 % in water; > 3 % in sediment and soil
(Anon. 1989).

Dangerous to environment:
not easily degradable;
bioaccumulating;
toxic to aquatic life (Anon. 1989).

References
2292Abernethy, S., Bobra, A.M., Shin, W.Y., Wells, P.G. & Mackay, D. 1986. Acute lethal toxicity of hydrocarbons and chlorinated hydrocarbons to two planktonic crustaceans: The key role of organism-water partitioning. Aquat Toxicol. 8: 163 - 174.
2357Anon 1988. Concentrations of industrial organic chemicals measured in the environment: The influence of physico - chemical properties, tonnage and use pattern. Technical report no 29. European chemical industry ecology & toxicology centre, ECETOC. pp. 105.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
2285Anon. 1989. Miljöfarliga ämnen - exempellista och vetenskaplig dokumentation. 303 p. Stockholm. Rapport från kemikalieinspektionen (KEMI) 10.
2283Anon.1986a. Evaluation of the OECD laboratory intercomparison testing on the determination of the partition coefficient n-octanol-water by reverse phase HPLC. Report. Fraunhofer-Institut für Umweltchemie und Ökotoxikologie.
2606Banerjee, S. 1984. Environ. Sci. Technol. 18: 587 - 591.
2294Bengtsson, B.-E. & Tarkpea, M. 1983. The acute aquatic toxicity of some substances carried by ships. Mar. Poll. Bull. 14: 213 - 214.
2288BUA. 1988. 1,2,4-triklorbenzol. BUA-Stoffberich 17 (Dezember 1987), VCH Verlagsgesellschaft, Weinheim.
207Buccafusco, R.J., Ells, S.J. & LeBlanc, G.A. 1981. Acute toxicity of priority pollutants to bluegill (Lepomis macrochirus). Bull. Environ. Contam. Toxicol. 26: 446 - 452.
2289Calamari, D., Galassi, S., Setti, F. & Vighi, M. 1983. Toxicity of selected chlorobenzenes to aquatic organisms. Chemosphere 12: 253 - 262.
2075Carlson, A.R. 1987. Effects of lowered dissolved oxygen concentration on the toxicity of 1,2,4-trichlorobenzene to fathead minnows. Bull. Environ. Contam. Toxicol. 38: 667.
2282Chin, Y., Weber, W.J. & Voice, T.C. 1986. Determination of partition coefficients and aqueous solubilities by reverse phase chromatography - II: Evaluation of partitioning and solubility models. Wat Res. 20 (11): 1443 - 1450.
2613Chiou, C. T. 1985. Environ. Sci. Technol. 19: 57 - 62.
3297Geiger, D. L. et al. 1990. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas) Vol 5. Center for Lake Superior Environmental Studies, University of Winsconsin-Superior, Superior, Winconsin, U.S.A. 332.
1770Geyer, H. Scheunert, I. & Korte, F. 1985. The effects of organic environmental chemicals on the growth of the alga Scenedesmus subspicatus: A contribution to Environmental Biology. Chemosphere 14: 1355.
564Heitmuller, P.T., Hollister, T.A. & Parrish, P.R. 1981. Acute toxicity of 54 industrial chemicals to sheepshead minnows (Cyprinodon variegatus). Bull. Environm. Contam. Toxicol. 27: 596 - 604.
578Hermens, J., Canton, H., Janssen, P. & DeJong, R. 1984a. Quantitative structure-activity relationships and toxicity studies of mixtures of chemicals with anesthetic potency: acute lethal and sublethal toxicity to Daphnia magna. Aquat. Toxicol. 5(2): 145 - 154.
579Hermens, J., Canton, H., Steyger, N. & Wegman, R. 1984b. Joint effects of a mixture of 14 chemicals on mortality and inhibition of reproduction of Daphnia magna. Aquatic Toxicol. 5: 315 - 322.
1891Holcombe, G.W. et al. 1987. Simultaneous multiple species testing: acute toxicity of 13 chemicals to 12 diverse freshwater amphibian, fish, and invertebrate families. Arch. Environ. Contam. Toxicol. 16: 697.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
236Klöpffer, W. 1978. Reflections on the relationship between chemical structure, physical properties and environmental behaviour of chemicals. In: Tests for the ecological effects of chemicals, Umweltbundesamt, Bericte 10/78, erschienen im Erich-Schmidt-Verlag, Berlin.
2293Knie, J., Hälke, A., Juhnke, I. & Schiller, W. 1983. Ergebnisse der untersuchungen von chemischen Stoffen mit vier Biotests. Deutsche Gewässerkundliche Mitteilungen, 27.Jahrg., Heft 3: 77 - 79.
2627Konemann, H., Zelle, R., Busser, F. and Hammers, W. E. 1979. J. Chromatogr. 178: 559 - 565.
761Könemann, W.H. 1979. Quantitative structure-activity relationships for kinetics and toxicity of aquatic pollutants and their mixtures in fish. Univ. Utrecht, Netherlands.
2295Könemann, H. 1981. Quantitative structure-activity relationships in fish toxicity studies. I. Relationship for 50 industrial pollutants. Toxicology 19: 209 - 221.
798LeBlanc, G.A. 1980. Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull. Environm. Contam. Toxicol. 24: 684 - 691.
2296LeBlanc, G.A. 1984. Comparative structure-toxicity relationship between acute and chronic effects to aquatic organisms. In: Kaiser, K.L.E. (Ed.), QSAR in Environmental Toxicology, Reidel Publishing Company, pp. 235 - 260.
1589Lewis, R.J. & Sweet, D.V. 1984. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 83-107-4.
2639Miller, M. M., Ghodbane, S., Wasik, S. P., Tewari, Y. B.and Martire, D. E. 1984. J. Chem. Eng. Data 29: 184 - 190.
3105MITI 1992. Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Compild under the Safety Division Basic Industries Bureau Ministry of International Trade & Industry, Japan. Edited by Chemicals Inspection & Testing Institute, Japan.
1973Pilli.A., Carle, D.O., Kline. E., Pickering. Q. & Lazorchak. J. 1988. Effets of pollution on freshwater organisms. JWPCF 60(6): 994 - 1065.
2291Richter, J.E., Peterson, S.F. & Kleinert, C.F. 1983. Acute and chronic toxicity of some chlorinated benzenes, chlorinated ethanes, and tetrachloroethylene to Daphnia magna. Arch. Environ. Contam. Toxicol. 12: 679 - 684.
2286Rinke, M. & Zetzsch, C. 1984. Rate constants for the reactions of OH radicals with aromatics: benzene, phenol, aniline, and 1,2,4-trichlorobenzene. Ber. Bunsenges. Phys. Chem. 88: 55 - 62.
2324Sabljic, A. 1987. On the prediction of soil sorption coefficients of organic pollutants from molecular structure: application of molecular topology model. Environ. Sci. Technol. 21: 358 - 366.
2147Sax, I. 1986. Hazardous chemicals information annual No. 1. Van Nostrand Reinhold Information Services, New York. 766 s.
2435Schwarzenbach, R. P. and Westall J. 1981. Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies. Environmental Science & Technology 15(11): 1360 - 1367.
2602Suntio, L. R., Shiu, W. Y. and Mackay, D. 1988. A review of the nature and properties of chemicals present in pulp mill effluents. Chemosphere 17(7): 1249 - 1290.
2297Tagatz, M.E., Plaia, G.R. & Deans, C.H. 1985. Effects of 1,2,4-trichlorobenzene on estuarine macrobenthic communities exposed via water and sediment. Ecotoxicol. Environ. Safety 10: 351 - 360.
2421Thompson, K. et al. 1986. A direct resazurin test for measure chemical toxicity. Toxicity Assessment 1: 407.
2290USEPA 1980a. Ambient water quality criteria for chlorinated benzenes. Environmental Protection Agency, Washington, D.C., Oct. 80, PB 81-117392.
2757USEPA 1984. Aquatic toxicity tests to characterize the hazard of volatile organic chemicals in water. A toxicity data summary. Part 1. Report No. EPA-600/3-83-009. NITS No. PB84-141506. (Ed): Ahmad, N. et al. U.S. Environmental protection agency, Duluth, MN 55804.
1456Veith, G.D. et al. 1983. Estimating the acute toxicity of narcotic industrial chemicals to fathead minnows. In: Aquatic toxicology and hazard assessment: sixth symposium. ASTM STP 803. Bishop, W.E. et al. (eds.). Am. Soc. Test. Mater, Philadelphia, Pa, 90.
1457Veith, R.C., Call, D.J. & Brooke, L.T. 1983. Structure-toxicity relationships for the fathead minnow, Pimephales promelas: Narcotic industrial chemicals. Can. J. Aquat. Sci. 40: 743 - 748.
2413Walker, J. D. 1987. Effects of chemicals on microorganisms. Journal WPCF 59 (6): 614 - 625.
2653Wateral, H., Tanaka, M. and Suzuki, N. 1982. Anal. Chem. 54: 702 - 705.
2659Yalkowsky, S. H., Orr, R. J., Valvani, S. C. 1979. Ind. Eng. Chem. Fundam. 18(4): 351 - 353.
1766Yoshioka, Y., Ose, Y. & Sato,T. 1985. Testing the toxicity of chemicals with Tetrahymena pyriformis. Sci. Total. Environ. 43:149.
2287Åkermark, B., Bäckström, P., Westlin, U., Göthe, R. & Wachtmeister, C.A. 1976. Photochemical dechlorination of 1,2,4-trichlorobenzene. Acta Chem. Scand. B 30: 49 - 52.

 
 
© Copyright Environmental Administration