www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


29.3.2024

Data bank of environmental properties of chemicals


Chemical
Tetrachloroethylene
CAS-number :
127-18-4
 
Synonyms :
1,1,2,2-tetrachloroethylene
Ethene, tetrachloro-
perchloroethene
perchloroethylene
perkloorietyleeni
tetrachloroethene
Tetrakloorietyleeni
 
Sumformula of the chemical :
C2Cl4
EINECS-number :
2048259 2048259
 
Uses :
Dry clearing solvent; metal degreasing; solvent for fats,
greases, waxes; remove soot from industrial boilers;
intermediate; vapor degreasing solvent; drying agent for metals
and certain other solids; vermifuge, heat transfer mediu,
manufacture of fluorocarbons.
 
State and appearance :
Colourless liquid.
 
Odor :
Ether-like odor.
 
Molecular weight :
165.82
 
Density, kg/m3 :
1623  20 °C
 
Vapor pressure, mmHg :
14  20°C
18.49  25°C, Daubert & Danner 1985
18.47  25°C, Riddick et al. 1986
 
Water solubility, mg/l :
150.3  25 °C, Horvath 1982
150  20 °C, Anon 1986b
10000  < 10 000, MITI 1992
 
Melting point, °C :
-22.7 
-19  Suntio et al. 1988
-19  MITI 1992
 
Boiling point, °C :
121.4 
121  Anon 1986b
121.2  MITI 1992
 
Log octanol/water coefficient, log Pow :
2.53  2.53 - 2.88, Sabljic 1987
2.88 
2.53  Anon 1986b
3.38  Anon 1988
2.6  Schwarzenbach & Westall 1981
2.88  Schwarzenbach et al. 1983
2.6  Chiou et al. 1977
2.53  Banerjee et al. 1980
2.88  Neely et al. 1974
3.4  Hansch & Leo 1985
 
Log organic C/water coefficient, log Pcw :
2.32  exptl, Schwarzenbach & Westall 1981
2.36  calcd, Schwarzenbach & Westall 1981
 
Henry's law constant, Pa x m3/mol :
730  Anon 1988
1793  exptl., Gossett 1987
2720  calc. Yaws et al. 1991
 
Volatilization :
Relative volatility (nBuAc=1) = 1.95

PCE will evaporate rapidly from water based on estimates of
half-life for the evaporation from water which range from
fractions of an hour to several hours in laboratory
experiments. 
Due to its high vapor pressure and low adsorption 
to soil, volatilization of PCE from dry soil should be rapid.

(Howard 1990)
 
Adsorption/desorption :
When PCE adsorbed to silica gel is irradiated through a pyrex
filter, 60 - 90% is lost in 6 days (Gaeb et al. 1977).
 
Mobility :
Equilibrium distribution:
        mass %
air     99.45
water    0.40
solid    0.15
(Anon. 1988).

Theoretical distribution:
> 99 % in air, < 0.2 in water (Anon. 1989).

Koc: 209 (Schwarzenbach 1981)
     210 (Chiou et al. 1979)

A Koc of 238 was calculated based on a reported Kom of 137.7 in
a peaty soil (Lyman et al. 1982) (Fresenius 1984).

Based on reported and estimated Koc's, PCE will be expected to
exhibit low to medium mobility in soil (Swann et al. 1983).
 
Other physicochemical properties :
Extremely stable, resist hydrolysis. 
Insoluble in water (Sax &
Lewis 1987).
 
Photochemical degradation in air :
PCE reacts with hydroxyl radicals which are produced by
sunlight in the troposphere with an estimated half-life of
about 2 months or a loss of 1.5% per sunlit day (Howard 1990).

Photooxidation in pure air with simulated tropospheric light
is with complete degradation occurring in 7 days and from 0.5%
to 100% loss per hour. 
The rate of loss is very sensitive to
radiation in the 280 - 330 nm region and increases with
increasing PCE concentration. 
The presence of nitrogen
oxides has little effect on the rate of loss, and the main
reaction product is phosgene (70 - 85%) with smaller amounts
of carbon tetrachloride (8%), dichloroacetyl chloride and
trichloroacetyl chloride. 
The proposed mechanism involved the
molecular reaction with chlorine radicals produced by
photooxidation of PCE (Singh et al. 1975) (Dimitriades et al. 
1983).

Some photodegradation occurs when PCE in air-saturated water is
exposed to sunlight. 
In one year, 75% degradation occured
whereas 59 - 65% degradation was noted for dark controls
(Dilling et al. 1975).

Photooxidation half-life in air:
160d - 16d, based upon measured rate data for the vapor phase
reaction with hydroxyl radicals in air (Howard 1991).
 
Other reactions in atmosphere :
Hydroxyl radicals in troposphere (half-life 100 days) can
attack double bonds when intermediate products are formed which
propably are then hydrolyzed to trichloroacetic acid (Pearson &
McConnell 1975).
 
Photochemical degradation in water :
No photochemical degradation in water (Rippen 1988).
 
Hydrolysis in water :
Hydrolysis in aerobic conditions , half-life > 9 months (Rippen
1988).
 
Half-life in air, days :
160  160d - 16d,
16  based upon photooxidation half-life in air.
  Howard 1991
 
Half-life in soil, days :
360  1yr - 6mo,
180  scientific judgement based upon estimated aqueous aerobic biodegradation half-life.
  Howard 1991
 
Half-life in water, days :
360  1yr - 6mo,
180  in surface water: scientific judgement based upon aerobic river die-away test data and saltwater grab sample data.
720  2yr - 1yr,
360  in ground water: scientific judgement based upon estimated aqueous aerobic biodegradation half-life.
  Howard 1991
 
Aerobic degradation in water :
Surface, no measurable degradation in 6 weeks (Hellmann 1985).

Aerobic half-life:
1yr - 6mo, scientific judgement based upon aerobic river 
die-away test data and saltwater grab sample data (Howard 
1991).
 
Anaerobic degradation in water :
Anaaerobic half-life:
4.5yr - 98d, scientific judgement based upon anaerobic 
screening test data (Howard 1991).
 
Total degradation in water :
If PCE is released in water, the primary loss will be by
evaporation. 
The half-life for evaporation from water will
depend on wind and mixing conditions and is estimated to range
from 3 hours to 14 days in rivers, lakes and ponds. 
Chemical
and biological degradation are expected to be very slow. 
PCE
will not be expected to significantly bioconcentrate in aquatic
organisms or to adsorb to sediment (Howard 1990).

In a seawater aquarium, an 8-day half-life was demonstrated to
be predominately the result of evaporation (Jensen & Rosenberg 
1975).

In a natural pond PCE disappeared in 5 and 36 days at low (25
ppm) and high (250 ppm) dose levels, respectively
(Lay et al. 1984).

Biodegradation:
11% by BOD
period: 28d
substance: 100 mg/l
sludge: 30 mg/l
(MITI 1992).
 
Degradation and transformation products :
Trichloroethene, dichloroethene and vinylchloride after
anaerobic degradation (Anon. 1989).
 
Ready biodegradability :
Confirmed to be non-biodegradable (Anon. 1987).
 
Other information of degradation :
Degradation of tetrachloroethylene:
*--------------------------------------------------------------*
ENVIRONMENT  INIT.CONC   REDOX-       TEMP   DEGRADATION  REF.
             mg/l        COND.        °C     %/day  t1/2
*--------------------------------------------------------------*
biofilm       0.015      methanogen   22      -       87 (1) a
water + soil 0.085 - 0.666 anaerobic  20     <5/7            b
water         0.010      methanogen   35     30/112  218     c
water         0.032      methanogen   35     38/112  165     c
water         0.130      methanogen   35     57/112   92     c
water         0.0088     aerobic      20      0/175          c
water         0.033      aerobic      20      0/175          c
water         0.074      aerobic      20      0/175          c
biofilm       0.01       aerobic      22      0/730          d
water         0.152      methanogen   35    100/57   <19     e
biofilm       0.170      methanogen   23       -      74 (1) f
water (deion.) 1.0       aerobic      25       -     264     g
water          0.2       aerobic + methane 20 0/4            h
soil column    0.7       aerobic + methane  -  -       0.26  i
water          0.13      aerobic       -     97/11           j
soil           0.0878    aerobic/anaer. 25   67/21    12.7   k
soil           1.43      aerobic/anaer. 25   68/21    13.0   k
soil           0.25      aerobic/anaer. 25   15/11    46.2   k
water          5         aerobic        25   45/7            l
water         10         aerobic        25   30/7            l
water (adapted)  5       aerobic        25   87/7            l
water (adapted) 10       aerobic        25   84/7            l
water + soil 0.6 - 0.8   aerobic        17   <2/7            m
*--------------------------------------------------------------*
(1)Biomass concentration set to 0.100 mg/l.
a) Bouwer & McCarty 1985       h) Fogel et al. 1986
b) Wilson et al. 1983          i) Anon. 1987b
c) Bouwer et al. 1981          j) Kästner 1986
d) Bouwer & McCarty 1982       k) Parsons et al. 1984
e) Bouwer & McCarty 1983a      l) Tabak et al. 1981
f) Bouwer & Wright 1987        m) Wilson et al. 1983a
g) Dilling et al. 1975         n) Vogel & McCarty 1985

No degradation occurred in 21 days in 3 biodegradability tests
acclimated or un acclimated inocula or in a river die-away
test (Mudder 1982).
 
Metabolism in mammals :
Quick uptake via skin and lungs. 70 - 90 % of the uptaken
amount is eliminated unchanged with exhale. 
Is metabolized
mostly to trichloroacetic acid which is excreted in urine
(Fawell & Hunt 1988).
 
Bioconcentration factor, fishes :
39  Salmo gairdneri, Verschueren 1983
  --
49  21d, Lepomis macrochirus,
  Davies & Dobbs 1984
  --
74  32d, Pimephales promelas, USEPA 1984
  --
38.9  Pimephales promelas, Neely et al. 1974
  --
49  Lepomis macrochirus, Barrows et al. 1980
  --
25.8  25.8 - 77.1, 8w, Cyprinus carpio,conc 0.1 mg/l,
77.1 
28.4  28.4 - 75.7, 8w, Cyprinus carpio, conc 0.01 mg/l,
75.7  MITI 1992
 
Other information of bioaccumulation :
Confirmed to be non-accumulative or low accumulative (Anon.
1987).
 
LD50 values to mammals in oral exposure, mg/kg :
8850  orl-rat, Lewis & Sweet 1984
8100  orl-mus, - " -
  --
2600  orl-rat, Torkelson & Rowe 1982
 
LC50 values to mammals in inhalation exposure, mg/m3 :
27800  6hr, ihl-rat, Bonnet et al. 1980
 
LDLo values to mammals in oral exposure, mg/kg :
4000  orl-dog, NIOSH 1979
 
LCLo values to mammals in inhalation exposure, ppm :
4000  4 hr, ihl-rat, Lewis & Sweet 1984
 
TCLo values to mammals in inhalation exposure, ppm :
96  7 hr, ihl-hmn, Lewis & Sweet 1984
 
Other information of mammals :
Maximum tolerable oral dose in 78 weeks was 720 - 1070 mg/kg/d
for mouse and rat (NCI 1977).
 
Health effects :
Irritant to eyes and skin (Sax & Lewis 1987).
 
Carcinogenicity :
NCI carcinogenesis bioassay completed: results positive, mus;
results negative, rat (Lewis & Sweet 1984).
 
Mutagenicity :
Positive in Ames test (IARC 1979).

Negative in chromosome aberration test (IARC 1979).

Restricted evidence of carcinogenicity in mice (IARC 1979).
 
Teratogenicity :
Teratogenic effects have not been proved but there have been
some toxic effects to fetuses (Fawell & Hunt 1988).
 
Maximum longterm immission concentration in air for plants,mg/m3 :
35  VDI 2306
 
Maximum longterm immission concentration in air for plants,ppm :
VDI 2306
 
Effects on microorganisms :
EC10, Pseudomonas putida, 51 mg/l, 16hr, pH 7, Anon 1986b.
 
Effects on wastewater treatment :
Inhibition in active sludge 10 mg/l (Neumann 1984).
 
EC50 values to algae, mg/l :
816  96hr, >816 mg/l, Selanastrum
  capricorntum, chlorophyll a
816  96hr, >816 mg/l, Selanastrum
  capricorntum, cellnumber
  Anon 1986b
  --
10.5  Phaeodactylum, Pearson & McConnell 1975
 
LOEC values to algae, mg/l :
phytoplankton, flow through,
  Erickson & Hawkins 1980
 
LC50 values to crustaceans, mg/l :
17.7  48hr, Daphnia magna, Anon 1986b
30.84  Tanytarsus dissimilis, Anon 1986b
  --
18.1  48hr, unfed, Daphnia magna
9.09  48hr, fed, Daphnia magna
  USEPA 1984
  --
10  96hr, Mysidopsis,
  Zaroogian et al. 1985
 
EC50 values to crustaceans, mg/l :
147  24hr, Daphnia magna, Anon 1986b
  --
8.5  48hr, unfed, Daphnia magna
7.49  48hr, fed, Daphnia magna
  USEPA 1984
  --
18  48hr, Daphnia magna, LeBlanc 1980
 
NOEC values to crustaceans, mg/l :
0.505  0.505 - 1.11, 28d, Daphnia
1.11  USEPA 1984
 
LC50 values to fishes, mg/l :
4.99  96 hr, Salmo gairdneri,
  Shubat et al. 1982
  --
13  96hr, Lepomis macrochirus,
  Buccafusco et al. 1981
  --
18.4  96hr, Pimephales promelas,
18  96hr, Salmo gairdneri,
  Alexander et al. 1978
  --
24  96hr, Pimephales promelas,
  Broderius & Kahl 1985
  --
130  48hr, Leuciscus idus melanotus,
18.4  96hr, Pimephales promelas,
13.46  Pimephales promelas,
21.4  96hr, Pimephales promelas,
12.9  Lepomis macrochirus,
96hr, Lepomis macrochirus,
4.8  Salmo gairdneri,
5.8  Salmo gairdneri,
  Anon 1986b
  --
13.4  96hr, Pimephales promelas,
4.99  96hr, Salmo gairdneri,
5.76  96hr, a mixture with dimethylforamide,
  Salmo gairdneri,
  USEPA 1984
  --
96hr, Limanda, sea water, flow trough,
  Pearson & McConnell 1975
  --
32  48hr, Oryzias latipes, MITI 1992
  --
13.4  96 hr, Pimephales promelas
20.3  96 hr, Pimephales promelas, Geiger et al. 1985
 
EC50 values to fishes, mg/l :
4.86  96hr, Salmo gairdneri, USEPA 1984
5.84  96hr, a mixture with dimethylforamide,
  Salmo gairdneri, USEPA 1984
  --
8.45  96 hr, Pimephales promelas, Geiger et al. 1985
 
NOEC values to fishes, mg/l :
0.5  0.5 - 1.4, 32d, Pimephales promelas
1.4  USEPA 1984
 
Effects on physiology of water organisms :
Poecilia sphenops, 60 days, 17 % survival, decreased weight and
injuries in liver, 1.6 mg/l (Loekle et al. 1983).
 
Effects on reproduction of water organisms :
Daphnia, growth, reproduction, 28 days, EC0, 0.5 - 1.1 mg/l
(Rippen 1988).

Pimephales, embryo, larvae, 32 days, EC0, 0.5 - 1,4 mg/l
(Rippen 1988).
 
Other information of water organisms :
EC50 (24 hr) 100 mg/l, rpd, Tetrahymena pyriformis (Yoshioka et
al. 1985).

LC50, Dugesia (Planarie), 25 mg/l (Yoshioka et al. 1986).

LC50 (48 hr), Elminius, 3,5 mg/l (Pearson & McConnell 1975).
 
Other information :
Estimated amount in troposphere: 0.7 Mt (1980) which is 3.3 % of
the total amount of organic bound chlorine (Fabian 1986).

References
39Alexander, H.C., McCarty, W.M. & Bartlett, E.A., 1978. Toxicity of perchloroethylene, trichloroethylene, 1,1,1-trichloroethane, and methylene chloride to fathead minnows. Bull. Environm. Contam. Toxicol. 20: 344 - 352.
2358Anon 1986b. Beitrag zur Beurteilung von 19 gefährlichen Stoffen in oberirdischen Gewässern. Texte 10. Umweltbundesamt. pp. 163.
2357Anon 1988. Concentrations of industrial organic chemicals measured in the environment: The influence of physico - chemical properties, tonnage and use pattern. Technical report no 29. European chemical industry ecology & toxicology centre, ECETOC. pp. 105.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
2333Anon. 1987b. Nedbrydelighed af miljøfremmede organiske stoffer. Utredningsrapport U1. Lossepladsprojektet.
2285Anon. 1989. Miljöfarliga ämnen - exempellista och vetenskaplig dokumentation. 303 p. Stockholm. Rapport från kemikalieinspektionen (KEMI) 10.
2605Banerjee, S., Yalkowsky, S. H. and Valvani, S. C. 1980. Environ. Sci. Technol. 14: 1227 - 1229.
3018Barrows, M. E. et al. 1980. Dyn Exposure Hazard Assess Toxic Chem. Ann Arbor M. I.: Ann Arbor Sci. p 379 - 92.
2928Bonnett, P., Francin, J.M., Gradinski, D., Raoult, G. & Zissu, D. 1980. Détermination de la concentration léthale 50 des principaux hydrocarbures aliphatiques chlorés chez le rat. Arch. Mal. Prof. Med. Trav. Seew. Soc. 41: 317 - 321.
3085Bouwer, E. J. & McCarty, P. L. 1984. Ground Water 22: 433 - 440.
2372Bouwer, E.J. & McCarty, P.L. 1982. Removal of trace chlorinated organic compounds by activated carbon and fixed film bacteria. Environ. Sci. & Technol. 16 (2): 836 -843.
2373Bouwer, E.J. & McCarty, P.L. 1983a. Transformation of 1- and 2-carbon halogenated aliphatic organic compunds under methanogenic conditions. Applied and Environmental Microbiology 45 (4): 1286 - 1294.
2370Bouwer, E.J. & McCarty, P.L. 1985. Utilization rates of trace halogenated organic coumpounds in acetate-grown biofilms. Biotechnology and Bioengineering 26: 1564 - 1571.
2375Bouwer, E.J. & Wright, J.P. 1987. Transformation of trace halogenated aliphatics in subsurface microcosms with anoxic biofilms. Submitted to Journal of Contaminant Hydrology.
2371Bouwer, E.J. et al. 1981. Anaerobic degradation of halogenated 1- and 2-carbon organic compounds. Environ. Sci. & Technol. 15 (5): 595 - 602.
190Broderius, S. & Kahl, M. 1985. Acute toxicity of organic chemical mixtures to the fathead minnow. Aquatic Toxicol. 6: 307-322.
207Buccafusco, R.J., Ells, S.J. & LeBlanc, G.A. 1981. Acute toxicity of priority pollutants to bluegill (Lepomis macrochirus). Bull. Environ. Contam. Toxicol. 26: 446 - 452.
2920CEFIC 1987. The occurrence of chlorinated solvents in the environment. Workshop Eur: Chem. Ind. Fed. (CEFIC) March 1987, Brussels.
3020Chiou, C. T. et al. 1979. Science 206: 831 - 832.
1624Chiou, C.T. Freed, V.H., Schmedding, D.W. & Kohnert, R.L. 1977. Partition coefficient and bioaccumulation of selected organic chemicals. Environ. Sci. Technol. 11(5): 475 - 478.
2994Daubert, T. E. and Danner, R. P. 1985. Data Compilation Tables of Properties of Pure Compounds. pp 450. American Institute of Chemical Engineers.
2924Davies, R.P. & Dobbs, A.J. 1984. The prediction of bioconcentration in fish. Water Res. 18: 1253.
2094Dilling, W.L., Tefertiller, N.B. & Kallos, G.J. 1975. Evaporation rates and reactivities of methylene chloride, chloroform, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other chlorinated compounds in dilute aqueous solutions. Environm. Sci. and Techn. 9 (9): 833 - 837.
3021Dimitriades, B. et al. 1983. J. Air Pollut. Control Assoc. 33: 575 - 587.
2925Erickson, S.J. & Hawkins, C.E. 1980. Effects of halogenated organic compounds on photosynthesis in estuarine phytoplankton. Bull. Environ. Contam. Toxicol. 24: 910 - 915.
2687Fabian, P. 1986. Halogenated hydrocarbons in the atmosphere. In: Hutzinger, O. (Ed.) The handbook of environmental chemistry, Vol. 3, part A, Springer-Verlag, Berlin, Heidelberg, New York, pp. 24 - 51.
2148Fawell, J.K. & Hunt, S. 1988. Environmental toxicology - organic pollutants. Ellis Horwood Limited, Chichester. 440 s.
2382Fogel, M.M., Taddeo, A.R. & Fogel, S. 1986. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Applied and Environmental Microbiology 51 (24): 720 - 724.
3029Friesel, P. et al. 1984. Fresenius Z Anal. Chem. 319: 160 - 164.
3022Gaeb, S. et al. 1977. Nature 270: 331 - 333.
3296Geiger, D. L. et al. 1985. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas) Vol. 2. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, Winconsin, U.S.A. 326.
2660Gossett, J. M. 1987. Environ. Sci. Technol. 21: 202 - 208.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
2922Hellmann, H. 1985. Verhalten von leichtflüchtigen Chlorkohlenwasserstoffen in Fliessgewässern. Z. Wasser-Abwasser-Forsch. 18: 210.
3023Horvath, A. L. 1982. Halogenated Hydrocarbons: Solubility - Miscibility with Water. New York, N. Y.: Marcel Dekker, Ins. pp 889.
2992Howard, P. H. et al. 1990. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. II: Solvents. Lewis Publishers, Inc. Chelsea. pp 546.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
2706IARC 1979. Some halogenated hydrocarbons. Monographs on the evaluation of the carcinogenic risk of chemicals to humans, Vol. 20, Internat. Agency Res. Cancer, Lyon. pp. 491 - 514.
3024Jensen, S. & Rosenberg, R. 1975. Water Res. 9: 659 - 661.
2585Kaare Jensen, S., Nielsen, M., Riber, H. & Skaarup, J. 1987. Nedbrydelighed af miljøfremmede organiske stoffer. Utredningsrapport U1, Lossepladsprojektet, COWI consult, København.
2369Kästner, M. 1986. Biologische Elimination von leichtfluchtigen Halogenkohlenwasserstoffen (Theoretische Glundlagen und Laborversuche). Fachseminar - Bodensanierung und Grundwasserreinigung - Wiedernutzung von Altstandorten. 24-25/9 1986 in Braunsweig: 155 - 166.
3025Lay, J. P. et al. 1984. Arch. Environ. Contam. Toxicol 13: 135 - 142.
798LeBlanc, G.A. 1980. Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull. Environm. Contam. Toxicol. 24: 684 - 691.
1589Lewis, R.J. & Sweet, D.V. 1984. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 83-107-4.
2836Lewis, R.J.Sr. & Tatken, R.L. (Eds.) 1979. Registry of Toxic Effects of Chemical Substances. U.S. Dept. Health and Human Services. Natl. Inst. Occup. Safety Health (NIOSH).
2927Loekle, D.M., Schecter, A. & Christian, J.J. 1983. Effects of Chloroform, Tetrachloroethylene, and Trichloroethylene on Survival, Growth, and Liver of Poecilia sphenops. Bull. Environ. Contam. Toxicol. 30: 199.
2960Lyman, W. J. et al. 1982. Handbook of Chemical Property Estimation Methods. Environmental behavior of organic compounds. McGraw-Hill New York.
3105MITI 1992. Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Compild under the Safety Division Basic Industries Bureau Ministry of International Trade & Industry, Japan. Edited by Chemicals Inspection & Testing Institute, Japan.
3026Mudder, T. I. 1982. Amer. Chem. Soc. Div. Env. Chem. Conf. p 52 - 53.
2929NCI 1977. Bioassay of Tetrachloroethylene for Possible Carcinogenity. Washington, D.C., U. S. Govt. Printing Office, No. (NIH) 77 - 813.
2641Neely, W. B., Branson, D. R. and Blau, G. E. 1974. Partition coefficient to measure bioconcentration potential of organic chemicals in fish. Environ. Sci. Technol. 8: 1113 - 1115.
2923Neumann, H. 1984. Eigenschaften, Auswirkungen und Bewertung der Abwässer von gewerblichen und industriellen Inderekteinleitern. Techn. Mitt. 77: 223.
2384Parsons, F., Wood, P.R. & DeMarco, J. 1984. Transformations of tetrachloroethene and trichloroethene in microcosms and groundwater. J. AWWA. 76 (2): 56 - 59.
2921Pearson, C.R. & McConnell, G. 1975. Chlorinated C1 and C2 hydrocarbons in the marine environment. Proc. P. Soc. Lond. B. 189: 305 - 332.
2971Riddick, J. A. et al. 1986. Organic solvents: Physical Properties and Methods of Purification, 4th Edit. New York: J. Wiley & Sons.
2510Rippen, G. 1988. Handbuch der Umwelt-Chemikalien. Stoffdaten, Prüfverfahren, Vorschriften. Ecomed. Landsberg/Lech, 2. Auflage.
3027Roberts, P. V. et al. 1984. J. Water Pollut. Control Fed 56: 157 - 163.
2324Sabljic, A. 1987. On the prediction of soil sorption coefficients of organic pollutants from molecular structure: application of molecular topology model. Environ. Sci. Technol. 21: 358 - 366.
2522Sax, N.I. & Lewis, R.J.Sr. 1987. Hawley's condensed chemical dictionary. Eleventh edition. Van Nostrand Reinhold Company. New York. pp. 1288.
2435Schwarzenbach, R. P. and Westall J. 1981. Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies. Environmental Science & Technology 15(11): 1360 - 1367.
2436Schwarzenbach, R. P., Giger, W., Hoehn, E. and Schneider, J. K. 1983. Behavior of organic compounds during infiltration of river water to groundwater. Field studies. Environ. Sci. Technol. 17 (8): 472 - 479.
1275Shubat, P.J., Poirier, S.H., Knuth, M.L. & Brooke, L.T. 1982. Acute toxicity of tetrachloroethylene and tetrachloroethylene with dimethylformamide to Rainbow Trout (Salmo gairdneri). Bull. Environ. Contam. Toxicol. 28: 7 - 10.
3028Singh, H. B. et al. 1975. Environ. Lett. 10: 253 - 256.
2602Suntio, L. R., Shiu, W. Y. and Mackay, D. 1988. A review of the nature and properties of chemicals present in pulp mill effluents. Chemosphere 17(7): 1249 - 1290.
2988Swann, R. L. et al. 1984. Res. Rev. 85: 17 - 28.
2335Tabak, H.H., Quave, S.A., Mashni, C.I. & Barth, E.F. 1981. Biodegradability studies with organic priority pollutant compounds. Journal WPCF. 53: 1503 - 1518.
2186Torkelson, T.R. & Rowe, V.K. 1982. Halogenated aliphatic hydrocarbons containing chlorine, bromine and iodine. In Patty's Industrial Hygiene and Toxicology Volume 2B, edited by G.D. Clayton and F.E. Clayton, 3553 - 3560, Chapter 48. J. Wiley and Sons.
2757USEPA 1984. Aquatic toxicity tests to characterize the hazard of volatile organic chemicals in water. A toxicity data summary. Part 1. Report No. EPA-600/3-83-009. NITS No. PB84-141506. (Ed): Ahmad, N. et al. U.S. Environmental protection agency, Duluth, MN 55804.
1599VDI 2306. VDI-Kommission Reinhaltung der Luft. Maximale Immissions-Konzentrationen (MIK). Organische Verbildungen.
1457Veith, R.C., Call, D.J. & Brooke, L.T. 1983. Structure-toxicity relationships for the fathead minnow, Pimephales promelas: Narcotic industrial chemicals. Can. J. Aquat. Sci. 40: 743 - 748.
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.
2385Vogel, T.M. & McCarty, P.L. 1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Applied and Environmental Microbiology: 1080 - 1083.
2377Wilson, J.T. et al. 1983a. Enumeration and characterization of bacteria indigenous to a shallow water-table aquifer. Ground Water 21 (2): 134 - 142.
2381Wilson, J.T. et al. 1983b. Biotransformation of selected organic pollutants in ground water. Dev. Ind. Microbiol. 24: Kap 17: 225 - 235.
3030Yaws, C., Yang, H-C. & Pan, X. 1991. Henry's law constants for 362 organic compounds in water. Chemical Engineering. November. p 179 - 185.
2597Yoshioka, Y., Ose, Y. & Sato, T. 1986b. Correlation of five test methods to assess chemical toxicity and relation to physical properties. Ecotoxicol. Environ. Safety 12: 15 - 21.
1766Yoshioka, Y., Ose, Y. & Sato,T. 1985. Testing the toxicity of chemicals with Tetrahymena pyriformis. Sci. Total. Environ. 43:149.
2926Zaroogian, G., Heltshe, J.F. & Johnson, M. 1985. Estimation of toxicity to marine species with structure-activity models developed to estimate toxicity to freshwater fish. Aquat. Toxicol. 6: 251.

 
 
© Copyright Environmental Administration