www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


20.4.2024

Data bank of environmental properties of chemicals


Chemical
Phenol
CAS-number :
108-95-2
 
Synonyms :
benzenol
carbolic acid
Fenoli
fenyylialkoholi
fenyylihappo
fenyylihydroksidi
hydroxybenzene
monohydroxybenzene
monophenol
oxybenzene
phenic acid
phenol alcohol
phenyl hydrate
phenyl hydroxide
phenylic acid
phenylic alcohol.
 
Sumformula of the chemical :
C6H6O
EINECS-number :
2036327
 
Uses :
Solvent. 
Produced by cumene oxidation and is used as an
intermediate in the manufacture of a wide range of important
chemicals including phenolic resins, bisphenol-A, caprolactam,
alkylphenols and adipic acid. 
Disinfectant.
 
State and appearance :
Colourless to brown-black.

Colourless, acicular crystals or white, crystalline mass.
 
Odor :
Threshold odour concentration in water: 1.0 - 7.5 mg/l
(Fawell & Hunt 1988).

Odour: characteristic, medicinal, sickening sweet and acrid
with a sharp and burning taste (Verschueren 1983).

Human odour perception: non perception: 0.022 mg/m3;
                        perception: 0.184 mg/m3;
human reflex response: adverse response: 0.015 mg/m3;
animal chronic exposure: no effect: 0.01 mg/m3;
                         adverse effect: 0.1 mg/m3
(Verschueren 1983).

Odour index: 16 at 20 °C (Verschueren 1983).

Sweet tarry odor. 
Sweet acrid odor. 
Has distinct, aromatic, 
somewhat sickening sweet and acrid odor. 
When perfectly pure 
phenol is devoid of odor of cresol, but it has peculiar
aromatic odor which is not disagreeable (HSDB 1998).
 
Molecular weight :
94.12
 
Spesicif gravity (water=1) :
1.07 
 
Vapor density (air=1) :
3.24 
 
Conversion factor, 1 ppm in air=_mg/m3 :
3.92  mg/m3
 
Conversion factor, 1 mg/m3 in air=_ppm :
0.26  ppm
 
Vapor pressure, mmHg :
0.2  20°C
40°C
0.524  25°C, Daubert & Danner 1985
0.35  at 25 °C, HSDB 1998
 
Water solubility, mg/l :
82000  15°C
86600  20°C
87000  25°C, Howard 1990
82800  at 25 °C, HSDB 1998
  --
69000  at 2.6 °C
82600  at 17.8 °C
84000  at 20 °C
89100  at 30 °C
97800  at 40 °C
  IUCLID 1996
 
Melting point, °C :
41 
43  Howard 1990
40.9  MITI 1992
 
Boiling point, °C :
182  at 760 mmHg
181.75  at 760 mmHg, Howard 1990
181.8  MITI 1992
 
Flashing point, °C :
79  closed cup, IUCLID 1996
 
pKa :
9.99 
  --
9.89  at 20 °C
9.99  at 25 °C, HSDB 1998
 
9.994  Serjeant & Dempsey 1979
 
Log octanol/water coefficient, log Pow :
1.46  Chin et al. 1986
1.5  ANON 1986
1.5  Anon 1988
1.46  Hansch & Leo 1985
1.5  Sangster 1989
 
Henry's law constant, Pa x m3/mol :
0.031  Anon 1988
0.04  Hine & Mokerjee 1975
0.031  at 25 °C, IUCLID 1996
 
Volatilization :
Despite its moderate vapor pressure, phenol has a low Henry's
Law constant and a low rate of evaporation from water. 
The
estimated half-life for evaporation from water is 3.2 months
(Branson 1978) (Shen 1982).

Using the Henry's Law constant, a half-life of 88 days was
calculated for evaporation from a model river 1 m deep with a
current of 3 m/sec and with a wind velocity of 3 m/sec
(Lyman et al. 1982).

Volatilization from near-surface soil should be relatively
rapid due to its moderate vapor pressure (Howard 1989).

The Henry's Law constant of phenol is 3.33x10-7 atm-m3/mole. 

Based this Henry's Law constant, the volatilization half-life 
from a model river (1 m deep, flowing 1 m/sec, wind velocity of
3 m/sec) is estimated to be 107 days (HSDB 1998).
 
Adsorption/desorption :
Low adsorptivity to clay soils and silt loam is reported
(Artiola-Fortuny & Fuller 1982).

Koc values for two silt loams are 39 and 91 (Scott et al. 
1983).

No adsorption to aquifer material was observed (Ehrlich et al 
1982).

Using the log Kow, an estimated Koc of 148 was calculated 
(Lyman et al. 1982).

soil                      pH   organic matter  Koc
Brookstone clay loam      5.7        5.1       16
Captina silt              5.7        1.1       91
Palouse silt              5.7        3.6       39
(HSDB 1998).

The Koc for phenol to a Batcombe silt loam soil (pH 6.7,
organic carbon 2.51 %) was 30 (HSDB 1998).
 
Mobility :
2.83 % (air), 96.17 % (water), 1.00 % (sediment).

Equilibrium distribution:
        mass %
air      1.05
water   98.47
solid    0.48
(Anon 1988)

Based on the reported and estimated Koc, phenol will be
expected to exhibit high to very high mobility in soil (Swann
et al. 1983).

The pKa of phenol is 9.99, indicating that it will be partially
dissociated at the upperend of environmental pH range and its
mobility may be pH dependent (HSDB 1998).
 
Other physicochemical properties :
Very soluble in alcohol, chloroform, ether, glyserol, carbon 
disulfide, volatile and fixed oils, aquatic alkali hydroxides.
 
Photochemical degradation in air :
Phenol absorbs light in region 290 - 330 nm and therefore might
directly photodegrade (Howard 1989).

Phenol's estimated half-life by reaction with hydroxyl radicals
in air is 0.61 days (Hendry & Kenley 1979).

Atmospheric photolysis half-life:
7.2d - 1.9d, based upon reported half-lives for photolysis
under sunlight for phenol in distilled water in summer (low
t1/2) and winter (high t1/2) (Howard 1991).

Photooxidation half-life in air:
22.8hr - 2.28hr, based upon measured reaction rate constant for
OH with phenol (Howard 1991).

The rate constant for the vapor-phase reaction of phenol with 
photochemically produced hydroxyl radicals is 2.63x10-11 
cm3/molecule at 25 °C. 
This corresponds to an atmospheric 
half-life of 14.6 hours at an atmospheric concentration of 
5x10+5 hydroxyl radicals per cm3 (HSDB 1998).
 
Photochemical degradation in water :
Photooxidation by UV-light in aqueous medium at 50 °C: 10.96 %
degradation to CO2 after 24 hr (Verschueren 1983).

Natural sunlight causes degradation in water (Callahan 1979).

Phenol has also been shown to inhibit oxidant formation both in
air and in water (Gitchell et al. 1974) (Draper & Crosby 1983).

The estimated half-life for reaction of phenol with
photochemically produced singlet oxygen in surface waters
contaminated by humic substances is 83 days (Scull & Hoigne 
1987).

As a class, phenols react relatively rapidly in sunlight natural
water via reaction with photochemically produced hydroxyl
radicals and peroxy radicals; typical half-lives for hydroxyl
and peroxyl radical reactions are on the order of 100 and 19.2
hr of sunlight, respectively (Mill & Mabey 1985).

Aquatic photolysis half-life:
7.2d - 1.9d, based upon reported half-lives for photolysis
under sunlight for phenol in distilled water in summer (low
t1/2) and winter (high t1/2) (Howard 1991).

Photooxidation half-life in water:
160d - 3.2d, scientific judgement based upon reported reaction
rate constants for RO2. with the phenol glass (Howard 1991).
 
Chemical oxygen demand, g O2/g :
2.33  5 days, Bridie et al. 1979
 
Biochemical oxygen demand, g O2/g :
1.68  5 days, Bridie et al. 1979
 
Half-life in air, days :
0.95  22.8hr - 2.28hr,
0.095  based upon measued reaction rate constant for .OH with phenol.
  Howard 1991
 
Half-life in soil, days :
10  10d - 1d,
based upon aerobic soil die-away study data.
  Howard 1991
 
Half-life in water, days :
2.4  2.4d - 0.22d,
0.22  in surface water: scientific judgement based upon estimated aqueous aerobic biodegradation half-life and aqueous photolysis half-life.
7d - 0.5d,
0.5  in ground water: scientific judgement based upon estimated aqueous aerobic biodegradation half-life.
  Howard 1991
 
Aerobic degradation in soil :
AEROBIC DEGRADATION IN SOIL
Maximum adsorption wavelength: 271 nm
NON-STERILE SOIL
Minimum time for >70% decrease: 0.50 - 1.00 d
% decomposition at the termination of the experiment:  5d, 100%
STERILE SOIL
% decomposition at the termination of the experiment:  40d, 15%
(Baker et al. 1980)

Percent mineralization in an alkaline, para-brown soil under
aerobic conditions was 45.5%, 48% and 65% after 3,7 and 70
days, respectively. 
(Haider et al. 1974)
 
Anaerobic degradation in soil :
ANAEROBIC DEGRADATION IN SOIL
Maximum adsorption wavelength: 271 nm
NON-STERILE SOIL
% decomposition at the termination of the experiment:  40d, 20%
STERILE SOIL
% decomposition at the termination of the experiment:  40d,  7%
(Baker et al. 1980)
 
Aerobic degradation in water :
Biodegradation to CO2 in estuarine water:

conc.   month     incubation  degradation rate   turnover time
µg/l              time (hr)   (µg/l/day) x 1000   (days)

5       January    24         270                  18
10      January    24         550                  18
5       March      24         100                  25
10      June       24         580                  17
(Verschueren 1983).

Aerobic half-life:
3.5d - 0.25d, scientific judgement based upon aerobic river 
die-away study data (high t1/2) and lake die-away study data 
(low t1/2) (Howard 1991).
 
Anaerobic degradation in water :
Anaerobic half-life:
28d - 8d, scientific judgement based upon aqueous anaerobic 
screening studies (Howard 1991).
 
Total degradation in soil :
Decomposition rate in soil suspension: 2 days for complete
disappearance (Verschueren 1983).

Degradation in soil is completed in 2 - 5 days even in
subsurface soils (Baker & Mayfield 1980).

Half-lives for degradation of low concn of phenol in 2 silt
loam soils were 2.70 and 3.51 hr (Scott et al. 1983).
 
Total degradation in water :
Complete degradation in <1 day in water from 3 lakes; rates
increace with increase concn phenol and increase tropic levels
of water; rate affected by concn of organic and inorganic
nutrients (Rubin & Alexander 1983).

Complete removal in river water after 2 days at 20°C and after 4
days at 4°C (Ludzack & Ettinger 1960).

Degradation is somewhat slower in salt water and a half-life of
9 days has been reported in an estuarine river (Lee & Ryan 
1979).

Biodegradation:
85% by BOD
period: 14d
substance: 100 mg/l
sludge: 30 mg/l
(MITI 1992)
 
Ready biodegradability :
Confirmed to be biodegradable (Anon. 1987).
 
Other information of degradation :
Impact on biodegradation processes:
inhibition of degradation of glucose by Pseudomonas
fluorescent: 70 mg/l; inhibition of degradation of glucose by
Escherichia coli: > 1000 mg/l; inhibition of the nitrification
process in non adapted activated sludge from 5.6 mg/l upwards
(Verschueren 1983).

Inhibition of cellulose degradation
by natural soil populations            at 17 hr     at 200 hr
 500 ppm phenol                        72 %           44.0 %
1000 ppm phenol                        97.6 %         56.5 %
1500 ppm phenol                        98.4 %         60.3 %
5000 ppm phenol                        98.7 %         99.5 %

inhibition of starch degradation
by natural soil populations            at 20 hr      at 140 hr
 500 ppm phenol                        41 %          40.3 %
1000 ppm phenol                        96 %          52.7 %
1500 ppm phenol                        97.4 %        85.1 %
5000 ppm phenol                        98.4 %        98.4 %
(Verschueren 1983).

*--------------------------------------------------------------*
ENVIRONMENT  INIT.CONC   REDOX-        TEMP  DEGRADATION  REF.
             mg/l        COND.         °C     %/day
*--------------------------------------------------------------*
water        20          aerobic       25      99/7        a
water         5          aerobic       25      96/7        b
water        10          aerobic       25      97/7        b
water (adapted) 5        aerobic       25     100/7        b
water  0.0001 - 0.001    aerobic       29      80/10       c
groundwater 30 - 50      sulfate reducing room 99/90       d
groundwater 30 - 50      methanogen    room   100/90       d
lake sediment    30 - 50 anaerobic     room   100/90       d
activated sludge 30 - 50 anaerobic     room   100/90       d
activated sludge appr. 50 anaerobic    35      91/14       e
soil suspension  10 - 100 aerobic      30     100/2        f
soil suspension  25      aerobic       25     100/1        g
soil              1      aerobic       23     100/5        h
soil              1      anaerobic     23      20/40       h
sterile soil      1      aerobic       23      15/40       h
sterile soil      1      anaerobic     23       7/40       h
soil            258      aerobic       20     >99/3        i
*--------------------------------------------------------------*
a) Bunch & Chamber 1967 b) Tabak et al. 1981 c) Subba-Rao et al.
1982 d) Gibson & Suflita 1986 e) Horowitz et al. 1982
f) Alexander & Aleem 1961 g) Alexander & Lustigman 1966
h) Baker & Mayfield 1980 i) Lųkke 1984 (Anon. 1987b).
 
Metabolism in mammals :
Phenol is readily absorbed by all routes, though it is rapidly
conjugated with either sulfate or glucuronic acid, followed by
elimination in the urine. 
Small quantities of oxidative
metabolites such as catechol, hydroquinone and benzoquinones
can be formed. 
Such metabolites have been suggested to be
involved in the hematotoxicity of benzene, though phenol does
appear to have much weaker activity than benzene in this
respect (Fawell & Hunt 1988).
 
Bioconcentration factor, fishes :
1.9  Carassius auratus, Freitag et al. 1984
  --
20  Leuciscus idus melanotus
  Freitag et al. 1984
 
Other information of bioaccumulation :
Bioconcentration factor (crustaceans):
277, Daphnia magna (Dauble et al. 1981).
  
Bioconcentration factor (algae):
200, Chlorella fusca (Freitag et al. 1984).
3.5, Scenedesmus quadricauda (Hardy et al. 1985)

The BCFs reported in aquatic organisms include:
goldfish (Carassius auratus) 1.9 
fish (unspecified) 17 
water flea (Daphnia magna) 277
algae (Clorella fusca) 200
freshwater phytoplankter (Scenedesmus 
quadricauda) 3.5. 
Phenol was rapidly eliminated from goldfish 
and therefore would be unlikely bioaccumulate
(HSDB 1998).
 
LD50 values to mammals in oral exposure, mg/kg :
384  orl-rat, Lewis & Sweet 1984
282  orl-mus
  --
270  orl-mus, Sweet 1987
 
LD50 values to mammals in non-oral exposure , mg/kg :
180  ipr-mus, Sweet 1987
127  ipr-rat
112  ivn-mus
344  scu-mus
669  skn-rat
850  skn-rbt
 
LC50 values to mammals in inhalation exposure, mg/m3 :
74  ihl-mam, Lewis & Sweet 1984
  --
177  ihl-mus, Sweet 1987
316  ihl-rat
 
LDLo values to mammals in oral exposure, mg/kg :
80  orl-cat, Lewis & Sweet 1984
  --
500  orl-dog, Sweet 1987
14000  orl-hmn
140  orl-hmn
10  orl-infant
420  orl-rbt
 
LDLo values to mammals in non-oral exposure , mg/kg :
300  ipr-gpg, Sweet 1987
620  ipr-rbt
180  ivn-rbt
500  par-cat
2000  par-dog
300  par-rbt
80  scu-cat
450  scu-gpg
650  scu-rat
 
TDLo values to mammals in oral exposure, mg/kg :
2300  orl-mus, 6-15d preg.
  effects on fertility
  effects on embryo or fetus
2600  orl-mus, 6-15d preg.
  effects on embryo or fetus
4000  orl-mus, 6-15d preg.
  specific developmental abnormalities
2800  orl-mus, 6-15d preg.
  effects on embryo or fetus
  specific developmental abnormalities
300  orl-rat, 6-15d preg.
  effects on fertility
1200  orl-rat, 6-15d preg.
  effects on embryo or fetus
  Sweet 1987
 
TDLo values to mammals in non-oral exposure , mg/kg :
600  ipr-rat, 12-14d preg.
  effects on embryo or fetus
  Sweet 1987
 
Other information of mammals :
Skin and eye irritation data:
skin, rabbit, 500 mg, 24 hr, severe;
skin, rabbit, 535 mg open, severe;
skin, rabbit, 100 mg, mild;
eye, rabbit, 5 mg, severe;
eye, rabbit, 100 mg rinse, mild (Sweet 1987).
 
Health effects :
Man: oral, ingestion, 1000 mg dose may be lethal (Verschueren
1983).
 
Carcinogenicity :
NCI carcinogenesis bioassay completed: results negative;
mus,rat (Lewis & Sweet 1984).

NCI carcinogenesis bioassay (oral); no evidence; mouse, rat
(Sweet 1987).
 
Mutagenicity :
Does not appear to be mutagenic in the Ames test, but has given
positive results in some higher test systems (Fawell & Hunt
1988).

Mutation data:
cyt, fish, multiple, 300 nl/l;
dnd, mam, lym, 250 mmol/l;
DNA inhibition:
hmn, fbr, 10 mmol/l;
hmn, hla, 1 mmol/l;
mus, orl, 20000 mg/kg;
mus, lym, 0.8 mmol/l;
dns, rat, orl, 4000 mg/kg;
mma, sat, 0.040 mmol/plate;
sin, smg, ovr, 100 ppm;
sce, hmn, lym, 0.005 mmol/l (Sweet 1987).
 
LD50 values to birds in oral exposure, mg/kg :
113  >113, orl-Agelaius phoeniceus
  Schafer et al. 1983
 
Effects on amphibia :
LDLo, 290 mg/kg, par, frog;
LDLo, 75 mg/kg, scu, frog;
LDLo, 290 mg/kg, scu, frog (Sweet 1987).
 
Effects on anthropods :
Tanytarsus dissimilis, > 51.1 mg/l, LC50, 2 d (Holcombe et al.
1987).
 
Maximum longterm immission concentration in air for plants,mg/m3 :
0.2  VDI 2306
 
Maximum longterm immission concentration in air for plants,ppm :
0.05  VDI 2306
 
Effects on microorganisms :
Escherichia coli: > 1000 mg/l (Verschueren 1983).

Toxicity threshold (cell multiplication inhibition test):
bacteria (Pseudomonas putida): 64 mg/l
(Bringmann & Kühn 1980a)
 
EC50 values to microorganism, mg/l :
30  Microtox, Beaubien et al. 1986
2820  Microcalorimetry, Beaubien et al. 1986
800  OECD 209, Klecka et al. 1985
1200  Oxygen uptake, Slabbert and Grabow 1986
15.1  6 hr Growth P. putida, Slabbert 1986
411  DIDHA, Bitton et al. 1986
1531  INT, Dutton et al. 1986
 
EC50 values to algae, mg/l :
290  4 hr, Selenastrum capricornutum
  Millemann et al. 1984
 
LOEC values to algae, mg/l :
4.6  Microcystis aeruginosa, Bringmann & Kühn 1980a
 
LC50 values to crustaceans, mg/l :
50 hr, Daphnia magna, Price et al. 1974
  --
23  48hr, Daphnia magna, Hermens et al.1984
  --
7.7  48hr, Daphnia magna, Lewis 1983
  --
40  40 - 51, 96hr, Gammarus pulex
51  Stephenson 1983
  --
25  96hr, Crangon crangon, Verschueren 1983
 
EC50 values to crustaceans, mg/l :
10  16d, rpd, Daphnia magna
  Hermens et al. 1984
  --
12.6  2d, mbt, Daphnia magna
  Holcombe et al. 1987
  --
12  24 hr, Daphnia magna
21  24 hr, Daphnia magna
  IUCLID 1996
 
NOEC values to crustaceans, mg/l :
0.16  16 d, Daphnia magna, IUCLID 1996
 
LC50 values to fishes, mg/l :
32  juv.,96 hr, Pimephales promelas
0.15  juv.,96 hr, Salmo gairdneri,Black et al. 1982
  --
9.69  act, Salmo gairdneri, Hodson et al.1984
  --
7.8  96hr, Salmo gairdneri, Voss et al. 1980
  --
13.5  96hr, Lepomis macrochirus
  Patrick et al. 1968
  --
24hr, eggs, Salmo gairdneri,Anon. 1973a
  --
5.7  96hr, Lepomis macrochirus, Jones 1971
  --
8.1  96hr, 8.1 - 14.0, 96hr
14  Notopterus notopterus,Gupta et al.1982
  --
46  24hr, Carassius auratus
  Bridie et al. 1979
  --
10.6  4d, Catostomus commersoni
17.4  4d, Lepomis macrochirus
25.3  4d, Pimephales promelas
10.5  4d, Salmo gairdneri
  Holcombe et al. 1987
  --
96hr, Gobius minutus
11.6  96hr, Branchydanio rerio
36.3  96hr, Jordanella floridae
46  48hr, Ophiocephalus punctatus
  Verschueren 1983
  --
0.15  0d, embryo-larval, Salmo gairdneri
0.15  4d, embryo-larval, Salmo gairdneri
5.37  0d, >5.37, embryo-larval, Micropterus
  salmoides
2.8  4d, embryo-larval, Micropterus salmoides
  Black et al. 1983
  --
28.8  96 hr, Pimephales promelas
32.4  96 hr, Pimephales promelas
49.7  96 hr, Pimephales promelas, Geiger et al. 1985
  --
24.8  96 hr, Pimephales promelas, Geiger et al. 1990
 
EC50 values to fishes, mg/l :
22.8  96 hr, mbt, Pimephales promelas, Geiger et al. 1990
 
LOEC values to fishes, mg/l :
0.2  grw, schr, Salmo gairdneri
2.5  grw, schr, Pimephales promelas
  Degraeve et al. 1980
  --
3.57  grw, schr, Pimephales promelas
  Holcombe et al. 1982
  --
11.2  48 hr, Brachydanio rerio
5 - 25 mg/l, 48 hr, Leuciscus idus
25 
5 - 12 mg/l, 96 hr, Oncorhynchus mykiss
12 
32  96 hr, Pimephales promelas
30  24 hr, Poecilia reticulata
  IUCLID 1998
 
NOEC values to fishes, mg/l :
0.75  grw, schr, Pimephales promelas
  DeGraeve et al. 1980
  --
1.83  grw, schr, Pimephales promelas
  Holcombe et al. 1982
 
Effects on physiology of water organisms :
Inhibition of photosynthesis of a freshwater, non-axenic
unialgal culture of Selenastrum capricornutum:
at 10 mg/l: 105 % carbon-14 fixation (vs. controls);
  100 mg/l: 92 %;
 1000 mg/l: 19 % (Verschueren 1983).
 
Other information of water organisms :
LC50, 96hr, 128.8 mg/l, Lymnea acuminata (Gupta & Rao 1982).

LC50, 4d, > 51.1 mg/l, Aplexa hypnorum (Holcombe et al. 1987). 
Branchydanio rerio, 4.9 mg/l, 27 d, 100 % mortality including
algicidal and herbicidal effects (Razani et al. 1986).

Toxicity threshold (cell multiplication inhibition test):
bacteria (Pseudomonas putida): 64 mg/l;
algae (Microcystis aeruginosa): 4.6 mg/l;
green algae (Scenedesmus quadricauda): 7.5 mg/l;
protozoa (Entosiphon sulcatum): 33 mg/l;
protozoa (Uronema parduczi): 144 mg/l (Verschueren 1983).

Chlorella pyrenoidosa, toxic, 233 mg/l (Verschueren 1983).

Lethal concentration:
rainbow trout: 5 mg/l, 3 hr;
perch: 9 mg/l, 1 hr
goldfish: 28.9 mg/l, 48 hr (Verschueren 1983).

Toxicity threshold (cell multiplication inhibition test):
green algae (Scenedesmus quadricauda): 7.5 mg/l
protozoa (Entosiphon sulcatum): 33 mg/l
(Bringmann & Kühn 1980a)
 
Other information :
Reduction of amenities:
taste and odour of fish is affected at: 15 - 25 mg/l;
tainting of the flesh of fish and other aquatic organisms: 1 -
10 mg/l;
taste in trout and carp: 25 mg/l; 1.0 mg/l;
odour threshold: average: 5.9 ppm;
                 range: 0.016 - 16.7 ppm;
taste and odour threshold: (tentative): 0.15 mg/l;
organoleptic limit: 0.001 mg/l (Verschueren 1983).

References
2348Alexander, M. & Aleem, M.I.H. 1961. Effect of chemical structure on microbial decomposition of aromatic herbicides. J. Agr. Food Chem. 9: 44 - 47.
2349Alexander, M. & Lustigman, B.K. 1966. Effect of chemical structure on microbial degradation of substituted benzenes. J. Agr. Food Chem. 14: 410 - 413.
2357Anon 1988. Concentrations of industrial organic chemicals measured in the environment: The influence of physico - chemical properties, tonnage and use pattern. Technical report no 29. European chemical industry ecology & toxicology centre, ECETOC. pp. 105.
59Anon. 1973a. European inland fishery advisory commission working party on water quality criteria for european freshwater fish, Water quality criteria for european freshwater fish. Water Res. 7: 929 - 941.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
2333Anon. 1987b. Nedbrydelighed af miljųfremmede organiske stoffer. Utredningsrapport U1. Lossepladsprojektet.
2283Anon.1986a. Evaluation of the OECD laboratory intercomparison testing on the determination of the partition coefficient n-octanol-water by reverse phase HPLC. Report. Fraunhofer-Institut für Umweltchemie und Ökotoxikologie.
3088Artiola-Fortuny, J. & Fuller, W. H. 1982. Soil Sci 133: 18 - 26.
2350Baker, M.D. & Mayfield, C.I. 1980. Microbial and non-biological decomposition of chlorphenols and phenol in soil. Water, Air & Soil Poll. 13: 411 - 424.
2426Beaubien, A. et al. 1986. A multispiecies toxicity assessment procedure using flow microcalorimetry: comparison with other toxicity evaluation metods. Toxicity Assessment 1: 187.
2429Bitton, G. 1986. A direct INT-dehydrogenase assay (DIDHA) for assessing chemical toxicity. Toxicity Assessment 1: 1.
155Black, J.A. et al. 1982. The aquatic toxicity of organic compounds to embryo-larval stages of fish and amphibians. PB82-224601, NUS, U.S. Dept. Commerce, Springfield, Va.
2752Black, A. J., Birge, W. J., Westerman, A. G. and Francis, P. C. 1983. Comparative aquatic toxicology of aromatic hydrocarbons. Fundamental and applied toxicology 3: 353 - 358.
3089Branson, D. R. 1978. Predicting the fate of chemicals in the aquatic environment from laboratory data, p 55 - 70 ASTM STP 657
182Bridie, A.L. et al. 1979. The acute toxicity of some petrochemicals to goldfish. Water Res. 13: 623.
1680Bridie, A.L., Wolff, C.J.M. & Winter, M. 1979. BOD and COD of some petrochemicals. Water Res. 13: 627 - 630.
188Bringmann, G. & Kühn, R. 1980a. Comparison of the toxicity thresholds of water pollutants to bacteria, algae and protozoa in the cell multiplication inhibition test. Water Res. 14: 231 - 241.
2345Bunch, R.L. & Chamber, C.W. 1967. A biodegradability test for organic compounds. J.W.P.C.F. 39: 181- 187.
2609Callahan, M. A., Slimak, M. W., Gabel N. W:, May, I. P., Fowler, C. F., Freed, J. R.,Jennings, P., Durfee, R. L., Whitmore, F. C., Maestri, B., Mabey, M. R., Holt, B. R. and Gould, C. 1979. Waterrelated environmental fate of 129 priority pollutants. Vol II. Halogenated aliphatic hydrocarbons, halogenated ethers, monocyclic aromatics, phthalate esters, polycyclic aromatic hydrocarbons, nitrosamines and miscellenious compounds. EPA - 440/4 - 79 -029b.
2282Chin, Y., Weber, W.J. & Voice, T.C. 1986. Determination of partition coefficients and aqueous solubilities by reverse phase chromatography - II: Evaluation of partitioning and solubility models. Wat Res. 20 (11): 1443 - 1450.
2994Daubert, T. E. and Danner, R. P. 1985. Data Compilation Tables of Properties of Pure Compounds. pp 450. American Institute of Chemical Engineers.
3090Dauble, D. D. et al. 1986. Bull. Envieon. Contam. Toxicol. 37: 125 - 132.
331DeGraeve, G.M. et al. 1980. Toxicity of underground coal gasification condenser water and selected constituents to aquatic biota. Arch. Environ. Contam. Toxicol. 9: 543.
330DeGraeve, G.M., Geiger, D.L., Meyer, J.S. & Bergman, H.L. 1980. Acute and embryo-larval toxicity of phenolic compounds to aquatic biota. Arch. Environ. Contam. Toxicol. 9: 557 - 568.
3091Draper, W. M. & Crosby D. G. 1983. Arch. Environ. Contam. Toxicol. 12: 121 - 126
2425Dutton, R. J. et al. 1986. Rapid test for toxicity in wastewater systems. Toxicity Assessment 1: 147.
3092Ehrlich, G. G. et al. 1982. Groundwater 20: 703 - 710.
2148Fawell, J.K. & Hunt, S. 1988. Environmental toxicology - organic pollutants. Ellis Horwood Limited, Chichester. 440 s.
3093Freitag, D. et al. 1984. p 119 in: QSAR Environ. Toxicol. Proc. Workshop Quant Struct-Act Relat. Kaiser KLE ed Reidel: Netherlands.
3296Geiger, D. L. et al. 1985. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas) Vol. 2. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, Winconsin, U.S.A. 326.
3297Geiger, D. L. et al. 1990. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas) Vol 5. Center for Lake Superior Environmental Studies, University of Winsconsin-Superior, Superior, Winconsin, U.S.A. 332.
2347Gibson, S.A. & Suflita, J.M. 1986. Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl. Environ. Microbiol. 52: 681 - 688.
3094Gitchell. A. et al. 1974. J. Air Pollut. Control Assoc. 24: 357 - 361.
511Gupta, P.K. & Rao, P.S. 1982. Toxicity of phenol, pentachlorophenol and sodium pentachlorophenate to a freshwater pulmonate snail Lymnaea acuminata (Lamarck). Arch. Hydrobiol. (Ger.) 94: 210.
512Gupta, P.K. et al. 1982b. Toxicity of phenol, pentachlorophenol and sodium pentachlorophenolate to a freshwater telost lebistes reticulatus (Peters). Acta Hydrochim. Hydrobiol. 10: 177.
2977Haider, K. et al. 1974. Arch. Microbiol. 96: 183 - 200.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
3095Hardy, J. T. et al. 1985. Environ. Toxicol. Chem. 4: 29 - 35.
3096Hendry, D. G. & Kenley, R. A. 1979. Atmospheric reaction products of organic compounds. p 20,46 EPA-560/12-79-001.
578Hermens, J., Canton, H., Janssen, P. & DeJong, R. 1984a. Quantitative structure-activity relationships and toxicity studies of mixtures of chemicals with anesthetic potency: acute lethal and sublethal toxicity to Daphnia magna. Aquat. Toxicol. 5(2): 145 - 154.
579Hermens, J., Canton, H., Steyger, N. & Wegman, R. 1984b. Joint effects of a mixture of 14 chemicals on mortality and inhibition of reproduction of Daphnia magna. Aquatic Toxicol. 5: 315 - 322.
3045Hine, J. & Mookerjee, P. K. 1975. J. Org. Chem. 40: 292 - 298.
1765Hodson, P.V., Dixon, D.G. & Kaiser, K.L.E. 1984. The measurement of median lethal doses (LD50s) as a rapid indication of contaminant toxicity to fish. Environ. Toxicol. Chem. 3: 243 - 254.
593Holcombe, G.W., Phipps, G.L. & Fiandt, J.T. 1982. Effects of phenol, 2,4-dimethylphenol, 2,4-dichlorophenol and pentachlorophenol on embryo, larval and early-juvenile fathead minnows. Arch. Environ. Contam. Toxicol. 11: 73 - 78.
592Holcombe, G.W. et al. 1982. The acute toxicity of Kelthane, Dursban, Disulfoton, Pydrin, and Permethrin to fathead minnows Pimephales promelas and rainbow trout Salmo gairdneri. Environ. Pollut., 29A: 167.
1891Holcombe, G.W. et al. 1987. Simultaneous multiple species testing: acute toxicity of 13 chemicals to 12 diverse freshwater amphibian, fish, and invertebrate families. Arch. Environ. Contam. Toxicol. 16: 697.
2337Horowitz, A., Shelton, D.R., Cornell, C.P. & Tredje, J.M. 1982. Anaerobic degradation of aromatic compounds in sediment and digested sludge. Dev. Ind. Microbial. 23: 435 - 444.
3047Howard, P. H. 1989. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. I: Large Production and Priority Pollutants. Lewis Publishers, Inc. Chelsea. pp 574.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
3114HSDB Database 1992 -. Hazardous Substances Data Bank. US. National Library of Medicine. TOMES Plus CD-ROM.
3253IUCLID 1995 -. International Uniform Chemical Information Database. European Commission. European Chemicals Bureau. Existing Chemicals. Ispra, Italy.
675Jones, H.R. 1971. Environmental control in the organic and petrochemical industries. Noyes Data Corporation 1971.
2427Klecka, G. M. et al. 1985. Evaluation of the OECD activated sludge respiration inhibition test. Chemosphere 14: 1239.
822Lewis, M.A. 1983. Effect of loading density on the acute toxicities of surfactants, copper, and phenol to Daphnia magna Straus. Arch. Environ. Contam. Toxicol. 12: 51.
2960Lyman, W. J. et al. 1982. Handbook of Chemical Property Estimation Methods. Environmental behavior of organic compounds. McGraw-Hill New York.
2351Lųkke, H. 1984. Organisk-kemiske stoffers skębne og effekt i planter og jord. Licentiat afhandling under det naturvidenskabelige fakultet ved Kųbenhavns universitet.
3074Mill, T. & Mabey, W. 1985. Environ. Exposure from Chemicals. Vol 1, p 208 - 210; Neely, W. B. & Blau, G. E. eds Boca Raton, F. L.: CRC Press.
967Millemann, R.E., Birge, W.J., Black, J.A., Cushman, R.M., McCarthy, J.F. & Stewart, A.J. 1984. Comparative acute toxicity to aquatic organisms of coal-derived synthetic fuels. Trans. Amer. Fish. Soc. 113: 74- 85.
3105MITI 1992. Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Compild under the Safety Division Basic Industries Bureau Ministry of International Trade & Industry, Japan. Edited by Chemicals Inspection & Testing Institute, Japan.
1111Patrick, R., Cairns, J. & Scheier, A. 1968. The relative sensitivity of diatoms, snails and fish to 20 common constituents of industrial wastes. Progr. Fish. Cult. 30: 137 - 140.
1973Pilli.A., Carle, D.O., Kline. E., Pickering. Q. & Lazorchak. J. 1988. Effets of pollution on freshwater organisms. JWPCF 60(6): 994 - 1065.
1667Price, K.S. Waggy, G.T. & Conway, R.A. 1974. Brine shrimp bioassay and seawater BOD of petrochemicals. J. Water Pollut. Control. Fed. 46(1): 63 - 77.
2056Razani, H. et al. 1986. Chronic toxic effect of phenol on zebrafish Branchydanio rerio. Bull. Jpn. Soc. Sci. Fish. 52: 1553.
3104Sangster, J. 1989. Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data, Vol 18, No. 3: 1111 - 1229.
1743Schafer , E.W.Jr., Bowles, W.A.Jr., Hurlbut, J. 1983. The acute oral toxicity, repellency and hazard potential of 993 chemicals to one or more species of wild and domestic birds. Arch. Environ. Contam. Toxicol. 12: 355 - 382.
3097Scott, H. D. et al. 1983. Environ. Qual 11: 107 - 111.
3098Scull, F. E. Jr. & Hoigne, J. 1987. Chemosphere 16: 681 - 694.
3099Serjeant, E. P. & Dempsey, B. 1979. Ionisation constants of organic acids in aqueous solution. IUPAC Chemical Data Series, New York, NY: Pergamon Press 989pp.
3100Shen, T. T. 1982. J. Air Pollut. Control Assoc. 32: 79 - 82.
2423Slabbert, J. L. 1986. Improved bacterial growth test for rabid water toxicity screening. Bull. Environ. Contam. Toxicol. 37: 565.
2432Slabbert, J. L. and Grabow, W. O. K. 1986. A rabid water screening test based on oxygen uptake of Pseudomonas putida. Toxicity Assessment, 1: 13.
1371Stephenson, R.R. 1983. Effects of water hardness, water temperature, and size of the test organisms on the susceptibility of the freshwater Shrimp, Gammarus pulex (L.). to toxicants. Bull. Environ. Contam. Toxicol. 31: 459.
2346Subba-rao, R.V., Rubin, H.E. & Alexander, M. 1982. Kinetics and extent of mineralization of organic chemicals at trace levels in freshwater and sewage. Appl. Environ. Microbiol. 43: 1139 - 1150.
2988Swann, R. L. et al. 1984. Res. Rev. 85: 17 - 28.
2101Sweet, D. 1987. Registry of toxic effects of chemical substances 1985 - 1986 edition. U.S. Department of health and human services.
2335Tabak, H.H., Quave, S.A., Mashni, C.I. & Barth, E.F. 1981. Biodegradability studies with organic priority pollutant compounds. Journal WPCF. 53: 1503 - 1518.
1599VDI 2306. VDI-Kommission Reinhaltung der Luft. Maximale Immissions-Konzentrationen (MIK). Organische Verbildungen.
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.
1476Voss, R.H., Wearing, J.T., Mortiner, R.D., Kovacs, T. & Wong, A. 1980. Chlorinated organics in kraft bleachery effluents. 3rd International congress on industrial waste water and wastes. Stockholm, february 6-8.
2413Walker, J. D. 1987. Effects of chemicals on microorganisms. Journal WPCF 59 (6): 614 - 625.

 
 
© Copyright Environmental Administration