www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


25.4.2024

Data bank of environmental properties of chemicals


Chemical
1-butanol
CAS-number :
71-36-3
 
Synonyms :
1-butanoli
1-butyl-alcohol
1-hydroksibutaani
1-hydroxybutane
butan-1-ol
butanol-1
butyl alcohol
butyric alcohol
butyylihydroksidi
n-butanol
n-butylalcohol
n-butyylialkoholi
NBA
normal butyl alcohol
normal-propyl carbinol
propylcarbinol
propyylikarbinoli, n-butanoli
propyylimetanoli
 
Sumformula of the chemical :
C4H10O
EINECS-number :
2007516
 
Uses :
1-butanol is used as an ingredient in perfumes and flavours
(Mellan 1950) and of: hop, lipid-free protein from egg yolk
(Meslar & White 1978), natural flavouring materials and
vegetable oils, phenols, and oligosaccharides from plant tissue
(Sodini & Canella 1977), and as a solvent in removing pigments
from moist curd leaf protein concentrate (Bray & Humbries
1978). 1-butanol is also used as: an extractant in the 
manufacture of antibiotics, hormones, and vitamins 
(Mellan 1950, Doolittle 1954, Yamazaki & Kato 1978), 
and of rhenium (Gukosyan et al.1979); 
a solvent for paints, coatings, natural resins, gums,
synthetic resins, dyes, alkaloids, and camphor (Mellan 1959,
Doolittle 1954); a cleanser for moulded contact lenses
(Mitazani et al. 1978); an intermediate in the
manufacture of butyl acetate, dibutyl phthalate, and dibutyl
sebacate (Mellan 1950, Doolittle 1954) as well as of the esters
of herbicides (Monich 1968).

Other miscellaneous applications of 1-butanol are as a swelling
agent in textiles, as a component of brake fluids, cleaning
formulations, degreasers (Monich 1968, Sitanov et al.1979), and
repellents (Zaikina et al.1978); and as a component of ore
flotation agents (Monich 1968), 
of protective coatings for glass objects (Artigas Gimenez
et al. 1979) and of wood-treating systems (Amundsen et al.
1979).

Mixed with xylene, it is used to produce a glass
substitute (Ferri 1979). 
It is also used as an additive to
increase the fineness of ground cement (Tavlinova & Dovyborova
1979) and as a solvent in the purification of polyolefins
(Takeuchi et al. 1978).

It may be liberated during photographic processing operations.

A further use of 1-butanol is as a flavouring agent in butter,
cream, fruit, liquor, rum, and whisky. 
Other foods in which it
is used include: Beverages, ice cream and ices, candy, baked
goods, cordials and cream (Hall & Oser 1965).
 
State and appearance :
Colourless liquid.
 
Odor :
Characteristic; rancid sweet.

Hedonic tone: neutral to pleasant.

Odour threshold approximately 3.078 mg/m3.

At a concentration of 20 mg/l, butanol gives a strong
unpleasant odour to drinking water. 
The odour threshold is 1
mg/l (Nazarenko 1969).

Threshold for unadapted panellists: 50 ppm
Threshold after adaption with pure odourant: 10000 ppm
Distinct odour: 48 mg/m3 = 16 ppm
(Verschueren 1983).

In water:
20 % of the population still able to detect odour at 1.5 ppm
10 % of the population still able to detect odour at 1.2 ppm
of the population still able to detect odour at 0.44 ppm
0.1 % of the population still able to detect odour at 0.16 ppm
(Lillard et al. 1975).

Quality: rancid, sweet
Hedonic tone: neutral to unpleasant
Threshold odour concentration:
absolute: 0.30 ppm
50 % recognition: 1.0 ppm
100 % recognition: 2.0 ppm
Odour index 100 % recognition: 2 630
(Hellman & Small 1974)
 
Molecular weight :
74.12
 
Spesicif gravity (water=1) :
0.81  at 20/4 °C
 
Vapor density (air=1) :
2.55 
 
Density, kg/m3 :
809  809 - 811
811 
 
Conversion factor, 1 ppm in air=_mg/m3 :
3.078  mg/m3
 
Conversion factor, 1 mg/m3 in air=_ppm :
0.325  ppm
 
Vapor pressure, mmHg :
4.4  20 C
7.024  25 C, Daubert & Danner 1985
10  30 C
 
Water solubility, mg/l :
77000  Barton 1984
 
Melting point, °C :
-89.5 
 
Boiling point, °C :
117.2 
 
Log octanol/water coefficient, log Pow :
0.88 
0.8  ANON 1986
0.88  Hansch & Leo 1985
0.84  Sangster 1989
 
Henry's law constant, Pa x m3/mol :
0.564  Mackay & Yeun 1983
 
Volatilization :
Relative volatility (nBuAc=1) = 0.47
 
Mobility :
Using a measured log octanol/water partition coefficient of
0.88, a soil sorption coefficient (Koc) of 71.6 was estimated 
(Lyman et al. 1982).

A Koc of this magnitude suggests that n-butanol will be
moderately to highly mobile in the soil (Kenaga 1980).
 
Photochemical degradation in air :
Photooxidation half-life in air:
8.8hr - 87.7hr,
based upon measured rate data for the vapor phase reaction
with hydroxyl radicals in air (Howard 1991).
 
Photochemical degradation in water :
Photooxidation half-life in water:
108d - 11.9yr,
based upon measured rate data for hydroxyl radicals in aqueous
solution (Howard 1991).
 
Chemical oxygen demand, g O2/g :
2.46  5 days, Bridie et al. 1979
 
Biochemical oxygen demand, g O2/g :
1.71  5 days, Bridie et al. 1979
 
Half-life in air, days :
0.37  8.8hr - 87.7hr,
3.65  based upon photooxidation half-life in air,
  Howard 1991
 
Half-life in soil, days :
24hr - 168hr,
scientific judgement based upon estimated
  unacclimated aqueous aerobic biodegradation
  half-life,
  Howard 1991
 
Half-life in water, days :
24hr - 168hr,
in surface water, scientific judgement based upon
  unacclimated freshwater grab sample data,
2d - 54d,
54  in ground water, scientific judgement based upon
  estimated aqueous anaerobic biodegradation
  half-life,
  Howard 1991
 
Aerobic degradation in water :
Aerobic half-life:
24hr - 168hr,
scientific judgement based upon unacclimated freshwater grab 
sample data (Howard 1991).
 
Anaerobic degradation in water :
Anaerobic half-life:
4d - 54d,
scientific judgement based upon acclimated anaerobic screening 
test data (Howard 1991).
 
Total degradation in soil :
When released to soil n-butanol is expected to leach to ground
water or to biodegrade. 
Volatilization from the soil surface
may also occur (Howard 1990).
 
Total degradation in water :
In water, n-butanol is expected to biodegrade. 
Volatilization
from the water surface is expected to occur with estimated
half-lives of 2.4 hr, 3.9 hr and 125.9 days in streams, rivers
and lakes (Lyman et al. 1982)
 
Other information of degradation :
Impact on biodegradation processes:
50 % inhibition of NH3 oxidation in Nitrosomonas at 8200 mg/l
(Verschueren 1983).

A 3 ppm solution of n-butanol was incubated in river water at
18 - 19 °C exerted a biological oxygen demand (BOD) of about
4.5 ppm after about 4 days (Hammerton 1955).

After 5 days 33% of the theoretical BOD was exerted in a
solution of n-butanol containing an inoculum from polluted
surface water (Dore et al. 1975).

In a batch system, n-butanol was dissolved to give a
concentration corresponding to a chemical oxygen demand (COD)
of 200 mg/l (Pitter 1976)

Sufficient adapted activated sludge was added to make the dry
matter of the inoculum 100 mg/l and the system was incubated at
20°C. 
Under these conditions a total of 98.9% of the initial
n-butanol was removed at a rate of 84.0 mg COD/g hr (Hammerton 
1955).

After 5 days incubation at 20°C, 66% of the theoretical oxygen
demand had been exerted in a BOD test (Bridie 1979).
 
Other information of bioaccumulation :
1-butanol does not bioaccumulate (Chiou et al. 1977).
 
LD50 values to mammals in oral exposure, mg/kg :
3400  orl-rbt, Münch & Schwartze 1925
  --
2100  orl-rat,Jenner et al. 1964
  --
800  800-1200, orl-rat,Purchase 1969
1200 
  --
3500  orl-rbt, Münch 1972
  --
1200  orl-hamster,Dubina & Maksikov 1976
  --
700  orl-rat, NIOSH 1977a
  --
2680  orl-mus,Rumyanstev et al. 1979
  --
4360  orl-rat, Patty 1967
4250  orl-rbt
  --
710  orl-rat
 
LD50 values to mammals in non-oral exposure , mg/kg :
240  ivn-cat,Macht 1920
  --
4200  skn-rbt,Egorov 1972
  --
5300  skn-rbt,Patty 1982
5000  mus-cat
 
Other information of mammals :
1-butanol is readily absorbed through the skin, lungs, and
gastrointestinal tract. 
In animals, 1-butanol is rapidly
metabolized by alcohol dehydrogenase to the corresponding acid,
via the aldehyde, and to carbon dioxide, which is the major
metabolite. 1-butanol is slightly toxic to mammals, markedly
irritating to the eyes and moderately irritating to the skin.

The primary effects from exposure to vapour for short periods
are various levels of irritation of the mucous membranes and
central nervous system depression. 
Its potency for intoxication
is approximately 6 times that of ethanol. 
A variety of
investigations have indicated non-specific membrane effects of
1-butanol. 
Effects of repeated inhalation exposure in animals
include pathological changes in the lungs, degenerative lesions
in the liver and kidneys, and narcosis. 
However, from the
animal studies available, it is not possible to determine a
no-observed-adverse-effect- level. 1-butanol has been found to
be non-mutagenic. 
No adequate data are available on
carcinogenicity, teratogenicity, or effects on reproduction
(WHO 1987).

Mouse: inhalation: no effect: 1650 ppm, 420 min (Patty 1967).
 
Health effects :
In man, 1-butanol, in the liquid or vapour phase can cause
moderate skin irritation and severe eye irritation manifested
as a burning sensation, lachrymation, blurring of vision, and
photophobia. 
Ingestion of the liquid or inhalation of the
vapour may result in headache, drowsiness, and narcosis. 
The
occurance of vertigo under conditions of severe and prolonged
exposure to vapour mixtures of 1-butanol and isobutanol has
been reported. 
From this study it was not possible to attribute
to vertigo to a single cause. 
The symptoms were reversible when
exposure ceased.

The minimal information available suggest that occupational
human exposure to air concentrations below 307.8 mg/m3 is not
associated with any adverse symptoms. 
However, studies on human
volunteers indicate that the light sensitivity of dark-adapted
eyes and electrical activity of the brain may be influenced by
air concentrations as low as 0.092 mg/m3.

Man: mild irritation of nose, throat, and eyes: 25 ppm
pronounced irritation : 50 ppm 
(Patty 1967).
 
Mutagenicity :
Mutagenicity in the Salmonella test: none:
< 0.0005 revertant colonies/nmol
< 70 revertant colonies at 10 mg/plate
(McCann et al. 1975).
 
LD50 values to birds in oral exposure, mg/kg :
2500  <2500, orl-Sturnus vulgaris
  Schafer et al. 1983
 
Effects on amphibia :
Threshold for narcosis: 2820 mg/l, Rana sp (Münch 1972).
 
Effects on plants :
Seed germination in lettuce (Lactuca sativa) was inhibited by
50 % at a concentration of 1-butanol of 390 mg/l
(Reynolds 1977).

Seed germination in cucumber (Cucumis sativus) was inhibited at
2500 mg/l (Smith & Siegal 1975).

1-butanol had an antisenescence effects on the leaves of oat
seedlings (Avena sativa). 
It both maintained chlorophyll levels
and prevented proteolysis in the dark (Satler & Thimann 1980).
 
Maximum longterm immission concentration in air for plants,mg/m3 :
15  VDI 2306
 
Maximum longterm immission concentration in air for plants,ppm :
VDI 2306
 
Effects on microorganisms :
Table 1. 
Toxicity data for microorganisms (WHO 1987).
_______________________________________________________________
Species       Conc.mg/l     Parameter      Reference
---------------------------------------------------------------
Protozoa
Uronema                     NOEC 20hr      Bringmann & Kühn
parduczi          8         total biomass  1981
(ciliate)

Chilomonas                  NOEC 48hr         - " -
paramaecium      28         total biomass
(flagellate)

Entosiphon
sulcatum         55         NOEC 72hr         - " -
(flagellate)                total biomass

Bacteria
Pseudomonas                 NOEC 16hr         - " -
putida          650         total biomass

Bacillus                    EC50              Yasuda-Yasaki et
subtilis       1258         spore germination al. 1978

               7400          no inhibition of    Chou et al.
                             degradation by      1978
                             methane culture
                             on acetate substrate
---------------------------------------------------------------

Toxicity threshold (cell multiplication inhibition test):
Bacteria (Pseudomonas putida): 650 mg/l
(Bringmann & Kühn 1980a)
 
Effects on wastewater treatment :
31% - 99%,
based upon % degraded under acclimated aerobic semi-continuous 
and continuous flow conditions (Howard 1991).
 
EC50 values to microorganism, mg/l :
2800  15 min Microtox, Hermens et al. 1985
10614  Biodegradation inhibition,
  Vaishnav 1986
3370  Microtox, Tarkpea et al. 1986
 
EC50 values to algae, mg/l :
8500  pht,Chlorella pyrenoidosa I,Jones 1971
 
LOEC values to algae, mg/l :
100  rpd,schr,Microcystis aeruginosa
  Bringmann & Kühn 1976
 
NOEC values to algae, mg/l :
875  8 d,grw,Scenedesmus quadricauda
100  8 d,grw,Microcystis aeruginosa
  Bringmann & Kühn 1978a
 
LC50 values to crustaceans, mg/l :
2100  96hr,Nitocra spinipes,Linden et al.1979
 
EC50 values to crustaceans, mg/l :
1880  24hr,mbt,Daphnia magna
  Bringmann & Kühn 1982
  --
1900  1900-2300, 96hr,Nitocra spinipes
2300  Mattson et al.1976, Bentsson et al. 1984
 
LC50 values to fishes, mg/l :
1900  1900-2300,24 hr,Semotitus atromaculatus
2300  Gillette et al. 1952
  --
1910  96hr,rpd,Pimephales promelas
  Vincent et al. 1976
  --
1200  48hr,Leucistus idus melanotus
  Juhnke & Ludemann 1978
  --
1900  24hr,Carassius auratus,Bridie et
  al.1979a
  --
1730  1730-1910,96hr,Pimephales promelas
1910  Mattson et al.1976,Veith et al.1981,1983
  --
2250  2250-2400,96hr,Alburnus alburnus
2400  Linden et al.1979,Bengtsson et al.1984
  --
1730  96 hr, Pimephales promelas, Brooke et al. 1984
 
EC50 values to fishes, mg/l :
1510  96 hr, mbt, Pimephales promelas, Brooke et al. 1984
 
Other information of water organisms :
At background concentrations likely to occur in the
environment, 1-butanol is not directly toxic for fish,
amphibia, or crustacea and is practically non toxic for algae.

Some protozoa are slightly sensitive to 1-butanol (WHO 1987).

Toxicity threshold (cell multiplication inhibition test):
Algae (Microcystis  aeruginosa): 100 mg/l
(Bringmann & Kühn 1976)

Green algae (Scenedesmus quadricauda): 875 mg/l
Protozoa (Entosiphon sulcatum): 55 mg/l
Protozoa (Uronema parduczi): 8.0 mg/l
(Bringmann & Kühn 1980a)

Algae (Chlorella pyrenoidosa: toxic: 8500 mg/l (Jones 1971).
 
Other effects on aquatic ecosystems :
1-butanol should be managed in the environment as a slightly
toxic compound. 
It poses an indirect hazard for the aquatic
environment, because it is readily biodegradable, which may
lead to oxygen depletion (WHO 1987).

References
1620Amundsen, J., Goodwin, R.J. & Wetzel, W.H. 1979. Watersoluble pentachlorophenol and tetrachlorophenol wood-treating systems. S. African 78: 1.
2283Anon.1986a. Evaluation of the OECD laboratory intercomparison testing on the determination of the partition coefficient n-octanol-water by reverse phase HPLC. Report. Fraunhofer-Institut für Umweltchemie und Ökotoxikologie.
1619Artigas Gimenez, G. Urdangaray arguelles, V., Gonzales Blasquez, I. & Alonso Rodriguez, J. 1979. Protective coating for glass objects. Fr. Demande 2: 410.
2993Barton, A. F. M. 1984. Alcohols with water. IUPAC Solubility Data Series. Vol 15. pp 438.
1640Bengtsson, B.E., Renberg, L. & Tarkpea, M. 1984. Molecular structure and aquatic toxicity: an example with C1 - C13 aliphatic alcohols. Chemosphere 13(5/6): 613 - 622.
1614Bray, W.J. & Humphries, C. 1978. Solvent fractionation of leaf juice to prepare green and white protein products, J. Sci. Food Agric. 29: 839 - 846.
182Bridie, A.L. et al. 1979. The acute toxicity of some petrochemicals to goldfish. Water Res. 13: 623.
1680Bridie, A.L., Wolff, C.J.M. & Winter, M. 1979. BOD and COD of some petrochemicals. Water Res. 13: 627 - 630.
187Bringmann, G. & Kühn, R. 1976. Vergleichende Befunde der Schadwirkung wassergefährdender Stoffe gegen Bakterien (Pseudomonas putida) und Blaualgen (Microcystis aeruginosa). Gwf-Wasser-Abwasser 117(9).
188Bringmann, G. & Kühn, R. 1980a. Comparison of the toxicity thresholds of water pollutants to bacteria, algae and protozoa in the cell multiplication inhibition test. Water Res. 14: 231 - 241.
189Bringmann, G. & Kühn, R. 1980b. Bestimmung der biologischen Schadwirkung wassergefahrdender Stoffe gegen Protozoen. II. Bakterienfressende Ciliaten, Z. Wasser/Abwasser Forsch. 1: 26 - 31.
1635Bringmann, G. & Kühn, R. 1981. Comparison of the effect of harmful substances on flagellates, on ciliates, on holozoic bacteriophagic protozoa and on saprozoic protozoa. GWF-Wasser-Abwasser 122(7): 308 - 312.
3295Brooke, L. T. et al. 1984. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas); Vol 1. Center for Lake Superior Environmental Studies University of Wisconsin-Superior, Superior, Wisconsin, U.S.A.
1624Chiou, C.T. Freed, V.H., Schmedding, D.W. & Kohnert, R.L. 1977. Partition coefficient and bioaccumulation of selected organic chemicals. Environ. Sci. Technol. 11(5): 475 - 478.
1638Chou, W.L., Speece, R.E. & Siddiqie, R.H. 1978b. Acclimation and degradation of petrochemical wastewater components by methane fermentation. In Scott, C.D. (ed.). Proceedings of the First Symposium on Biotechnology, Energy, Production, and Conservation, New York, Interscience Publishers. Vol. 8. pp. 391 - 414.
1637Chou, W.L., Speece, R.E., Siddiqie, R.H. & KcKeon, K. 1978a. The effect of petrochemical structure on methane fermentation toxicity. Prog. Water Technol. 10(5/6): 545 - 558.
2994Daubert, T. E. and Danner, R. P. 1985. Data Compilation Tables of Properties of Pure Compounds. pp 450. American Institute of Chemical Engineers.
1615Doolittle, A.K. 1954. The technology of solvents and plasticizers. New York, John Wiley and Sons, pp. 644 - 645.
349Dore, M., Brunet, N., Legube, B. 1975. Participation de differents composes organiques a la valeur des criteres globaux de pollution. La tribune du Cebedeau, 28(374): 3 - 11.
1627Dubina, O.N. & Maksinov, G.G. 1976. Testing the use of golden hamsters in toxicological research. Gig. Tr. Ohkhr. Zdorov'ya Rab. Neft. Neftekhim. Prom-sti 9: 100 - 103.
1630Egorov, Y.L. 1972. Dependance of dermal toxicity of alcohols on solubility index: oil/water. Toksikol Gig. Prod. Neftekhim Yarosl. 98: 102.
1621Ferri, S.S. 1979. Scratch-resistant coating for lenses. Braz. Pedido PI 78: 5.
481Gillette, L.A., Miller, D.L. & Redman, H.E. 1952. Appraisal of a chemical waste problem by fish toxicity tests, Sewage Ind. Wastes 24(11): 1397 - 1401.
1607Gukasyan, Z.G., Barysheva, K.F., Saakyan, O.A. & Arustamyan, R.K. 1979. Nauch. Soobshch. N.-I.Proekt,In-t Tsvet. Metaalurgii. Armniprotsvetmet, 21: 18 - 21.
1610Hall, R.L. & Oser, B.L. 1965. Recent progress in the consideration of flavouring ingredients under the food additives amendement. III. Gras substances. Food Technol., 151.
2995Hammerton, C. 1955. J. Appl. Chem. 5: 517 - 524.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
1673Hellman, T.M. & Small, F.H. 1974. Characterization of the odour properties of 101 petrochemicals using sensory methods. J. Air Pollut. Control Assoc. 24: 979 - 982.
2414Hermens, J. et al. 1985c. Quantitative structure activity relationships and mixture of toxicity studies of organic chemicals in Photobacterium phosphoreum: Microtox test. Ecotox. Environ. Safety 9: 17.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
1625Jenner. P.M. Hagan, E.C., Taylor, J.M., Cook, E.L. & Fitzhugh, D.G. 1964. Food flavourings and compounds of related structure. I. Acute oral toxicity. Food Cosmet. Toxicol. 2: 327.
675Jones, H.R. 1971. Environmental control in the organic and petrochemical industries. Noyes Data Corporation 1971.
685Junkhe, J. & Lüdemann, D. 1978. Ergebnisse der Untersuchung von 200 chemischen Verbindungen auf akute Fishtoxiczität mit dem Goldenorfentest. Z. Wasser-Abwasser Forsch. 11: 161 - 164.
2626Kenaga, E. E. 1980. Ecotoxical. Environ. Safety 4: 26 - 38.
1602Lillard, D.A. et al. 1975. Aqueous odour, thresholds of organic pollutants in industrial effluents. EPA-660/4-75-002.
831Linden, E., Bengtsson, B-E., Svanberg, O. & Sundström, G. 1979. The acute toxicity of 78 chemicals and pesticide formulations against two brackish water organisms, the bleak (Alburnus alburnus) and the harpacticoid Nitocra spinipes. Chemosphere 11/12: 843 - 851.
2960Lyman, W. J. et al. 1982. Handbook of Chemical Property Estimation Methods. Environmental behavior of organic compounds. McGraw-Hill New York.
2996Mackay, D. and Yeun, A. T. K. 1983. Environ. Sci Technol. 17: 211 - 217.
1612Mattson, V.R., Arthur, J.W. & Walbridge, C.T. 1976. Acute toxicity of selected organic compounds to fathead minnows. Duluth, Minnesota, US EPA Environmental Research Laboratory (EPA No. 600/3-76-097).
912McCann, J. et al. 1975. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals, Proc. Nat. Acad. Sci. USA, 72(12): 5135-5139 Medical Sciences, Dec.
1606Mellan, I. 1950. Industrial solvents, New York, Van Nostrand Reinhold Company, pp. 482 - 488.
1605Meslar, H.W. & White, H.B. 1978. Preparation of lipid-free protein extracts of egg yolk. Anal. Biochem. 91: 75 - 81.
1608Mituzani, Y., Miwa, Y. & Moriguchi, J. 1978. Jpn. Kokai 78: 41, 359.
1609Monich, J.A. 1968. Alcohols: their chemistry, properties, and manufacture. New York, Amsterdam, London, Chapman and Reinhold.
1611Munch, J.C. & Schwartze, E.W. 1925. Narcotic and toxic potency of aliphatic alcohols upon rabbits. J.lab. clin. Med. 10: 985 - 996.
1604Munch. J.C. 1972. Aliphatic alcohols and alkyl esters: narcotic and lethal potencies to tadpoles and to rabbits. Ind. Med. 41(4): 31 - 33.
1628NIOSH 1977. Manual of analytical methods. 2nd ed. Rockville, Maryland, National Institute of Occupational Safety and Health. Vol. 2.
1631Patty, F.A. 1963. Industrial hygiene and toxicology. 2nd. ed.. New York, London, Sydney, John Wiley and Sons, Interscience Publishers. Vol. 2. pp. 1441 - 1450.
1644Patty, F.A. 1967. Industrial hygiene and toxicology. Vol 2. Interscience Publishers.
1135Pitter, P. 1976. Determination of biological degradability of organic substances, Water Res. 10: 231 - 235.
1626Puchase, F.H. 1969. Studies on Kaffircorn malting and brewing. XII. The acute toxicity of some fused oil found in Bantu beer. S. Afr. med, J. 53: 795.
1632Reynolds. T. 1977. Comparative effects of aliphatic compounds on inhibition of lettuce fruit germination. Ann. Bot. 41(173): 637 - 648.
1629Rumyanstev, A.P., Lobanova, I.Y., Tiunova, L.V. & Chernikova, V.V. 1979. Toxicology of butyl alcohol. Khim. Prom.-st. Ser. Toksikol Sanit. Khim. Plastmass 2: 24 - 26.
3104Sangster, J. 1989. Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data, Vol 18, No. 3: 1111 - 1229.
1634Satler, S.D. & Thimann, K.V. 1980. The influence of aliphatic alcohols on leaf senescences. Plant Physiol 66: 395 - 399.
1743Schafer , E.W.Jr., Bowles, W.A.Jr., Hurlbut, J. 1983. The acute oral toxicity, repellency and hazard potential of 993 chemicals to one or more species of wild and domestic birds. Arch. Environ. Contam. Toxicol. 12: 355 - 382.
1617Sitanov, V.S. Bandik, K.A., Enakaeva, V.G. & Baranova, R.K. 1979. Composition for removing grease and oil from textiles. Otkrytiya, Izobert., Prom. Obraztsy, Tonaznye Znaky, 38: 90.
1633Smith, C.W. & Siegel, S.M. 1975. Differential permeation of Artemia cysts and cucumber seeds by alcohols. J. Histochem. Cytochem 23(1): 80 - 83.
1613Sodini, G. & Canella, M. 1977. Extraction of phenols and oligosaccharides from plant tissues. Span. 445: 653.
1623Takeuchi, H., Katada, M., Takahashi, M., Kawamata, S. & Kohari, H. 1978. Purification of polyolefins. Tokkyo Koho 79: 126, 291.
2418Tarkpea, M. et al. 1985. Comparison of the Microtox test with the 96-Hr LC50 for the Harpacticoid Nitocra spinipes. Ecotoxicol. Environ. Safety 11: 127.
1622Tavlinova, T.I. & Dovyborova, L.N. 1979. Effect of aliphatic alcohols on the crystal formation of hydrates of clinker minerals. Isv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 22: 972 - 975.
2416Vaishnav, D. D. 1986. Chemical structure-biodegradation inhibition and fish acute toxicity relationships for narcotic industri chemicals. Toxicity Assessment 1: 227.
1599VDI 2306. VDI-Kommission Reinhaltung der Luft. Maximale Immissions-Konzentrationen (MIK). Organische Verbildungen.
1456Veith, G.D. et al. 1983. Estimating the acute toxicity of narcotic industrial chemicals to fathead minnows. In: Aquatic toxicology and hazard assessment: sixth symposium. ASTM STP 803. Bishop, W.E. et al. (eds.). Am. Soc. Test. Mater, Philadelphia, Pa, 90.
1639Veith, G.D., Call, D.J. & Brooke, L.T. 1981. Estimating the acute toxicity of narcotic industrial chemicals to fathead minnows. Philadelphia, Pennsylvania, American Society of Testing and Materials (ASTM Special Technical Publication No. 802.)
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.
1474Vincent, R.M., Arthur, J.W. & Walbridge, C.R. 1976. Acute toxicity of selected organic compounds to fathead minnows. EPA-600/3-76-097.
2413Walker, J. D. 1987. Effects of chemicals on microorganisms. Journal WPCF 59 (6): 614 - 625.
1641WHO 1987. Butanols. Four isomers: 1-butanol, 2-butanol, tert-butanol, isobutanol. Environmental Health Criteria 65.
1616Yamazaki, Y. & Kato, K. 1978. Penicillins or cephalosporins. Jpn. Kokai Tokio Koho 78, 107, 484.
1636Yasuda-Yasaki, Y., Namike-Kanie, S. & Hachisaku, Y. 1978. Inhibition of germination of Bacillus subtilis spores by alcohols. Spores 7: 13 - 16.
1618Zaikina, E.I., Terekhova, A.I., Chudov, L.N., Shatenshtein, A.I., Petrov, E.S., Shcherbak, V.P., Zakomyrdin, A.A., Simetskii, W.A. & Sokhadze, L.A. 1978. Repellent composition. Otkrytiya, Izobret., Prom. Obraztsy, Tovarnye, Znaky 55: 18.

 
 
© Copyright Environmental Administration