www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


5.12.2025

Data bank of environmental properties of chemicals


Chemical
4-chloronitrobenzene
CAS-number :
100-00-5
 
Synonyms :
1-chloro-4-nitrobenzene
p-chloronitrobenzene
p-kloorinitrobentseeni
 
Sumformula of the chemical :
C6H4ClNO2
EINECS-number :
2028096
 
Molecular weight :
157.56
 
Spesicif gravity (water=1) :
1.52  18/4°C
 
Conversion factor, 1 ppm in air=_mg/m3 :
6.55  mg/m3
 
Conversion factor, 1 mg/m3 in air=_ppm :
0.15  mg/m3
 
Vapor pressure, mmHg :
0.0104  at 20 °C, estimated, Lyman et al. 1982
 
Water solubility, mg/l :
10  20 °C, Anon 1986b
225  20 °C, Yalkowsky et al. 1987
 
Melting point, °C :
82  82 - 84 °C, Howard 1989
84 
 
Boiling point, °C :
239  239-242°C
242 
239.1  Anon 1986b
242.4  MITI 1992
 
Log octanol/water coefficient, log Pow :
2.39  2.39/2.41
2.41 
2.44  Anon 1986b
2.39  Hansch & Leo 1985
 
Henry's law constant, Pa x m3/mol :
3.6  estimated, Hine & Mookerjee 1975
 
Volatilization :
Using the estimated Henry's Law constant, the volatilization
half-life from 1 m deep in surface water with a current
velocity of 1 m/sec and wind speed of 3 m/sec has been
estimated to be 33.5 hours (Lyman et al. 1982).

Based on a soil absorption coefficient for
1-chloro-4-nitrobenzene of 151 - 476 and an estimated Henry's
Law constant, volatilization from wet soil surfaces may be
significant (Hine & Mookerjee 1975).

Based on the estimated vapor pressure of 1.04x10-2 mmHg at 20
°C volatilization from dry soil surfaces should be considerably
slower than from wet soil surfaces (Lyman et al. 1982).
 
Mobility :
Based on the log Kow of 2.39 and a water solubility of 453 mg/L 
at 20 °C, the soil absorption coefficient (Koc) for 
1-chloro-4-nitrobenzene has been estimated to be 476 and 151, 
respectively (Lyman et al. 1982).

These Koc valeus suggest that thia compound should be 
moderately mobile in soil (Swann et al. 1983).
 
Photochemical degradation in air :
1-Chloro-4-nitrobenzene does absorb UV light in the
environmentally significant range (>290 nm). 
It indicates that
potential exists for photolysis in water and air (Sadtler) 
(Howard 1989).

In air, vapor-phase 1-chloro-4-nitrobenzene is predicted to
react with hydroxyl radical with an estimated rate constant of
5.0x10-12 cm3/molecule-sec at 25 °C. 
Assuming an ambient
hydroxyl radical concentration of 8.0x10+15 radicals/cm3, the
reaction half-life has been calculated to be 1.97 days (GEMS 
1986).

4-Chloro-2-nitrophenol may be produced by the photochemical
reaction of 1-chloro-4-nitrobenzene in air (Kanno & Nojima 
1979).
 
Photochemical degradation in water :
In the presence of TiO2 the photolysis half-life of
1-chloro-4-nitrobenzene in aqueous solution was less than an
hour with artificial light of wavelength greater than 290 nm
(Hustert et al. 1987).

When an aqueous solution of 1-chloro-4-nitrobenzene was
irratiated with light of wavelengths greater than 290 nm for 84
hours, less than 5 % of the starting material underwent
reductive dechlorination (Miller & Crosby 1983).
 
Total degradation in soil :
1-Chloro-4-nitrobenzene (10 µg/mL)inoculated with a mixed 
culture of microorganisms in soil was observed to be resistant 
to biodegradation (Alexander & Lustigman 1966).
 
Total degradation in water :
Biodegradation:
0% by BOD
period: 14d
substance: 30 mg/l
sludge: 100 mg/l
(MITI 1992)

1-Chloro-4-nitrobenzene (100 ppm) inoculated with 30 ppm 
activated sludge at 25 °C was less than 30 % degraded after 2 
weeks (Kitano 1978) (Sasaki 1978).
 
Ready biodegradability :
Confirmed to be non-biodegradable (Anon. 1987).
 
Other information of degradation :
Biodegradation period by a soil microflora: >64 days
Inhibition of biodegradation: at 100 mg/l, no inhibition of NH3
oxidation by Nitrosomonas sp (Hockenbury & Grady 1977).

The yeast Rhodosporidiam sp. reduced 1-chloro-4-nitrobenzene
under aerobic conditions to give 4-chloroacetanilide and
4-chloro-2-hydroxyacetanilide as final major metabolites
(Corbett & Corbett 1981).

It has been reported aquatic biodegradation half-life of much
more greater than 4 weeks with both adapted and unadapted
microorganisms and1-chloro-4-nitrobenzene was found to remain
unchanged under common biodegradation procedures used
wastewater treatment plants (Canton et al. 1985) 
(Lindgaard-Joergensen & Jacobsen 1986).
 
Bioconcentration factor, fishes :
5.8  5.8 - 20.9, 8w, Cyprinus carpio, conc 0.15 mg/l,
20.9 
7.5  7.5 - 18.1, 8w, Cyprinus carpio, conc 0.0915 mg/l,
18.1  MITI 1992
 
Other information of bioaccumulation :
Confirmed to be non-accumulative or low accumulative (Anon.
1987).

A BCF value for 1-chloro-4-nitrobentzene has been estimated to
39 (Canton et al. 1985).

The experimentally measured value in guppy (Poecilia
reticulata) on the basis of fat weight was 288 (Deneer et al. 
1987).
 
LD50 values to mammals in oral exposure, mg/kg :
420  orl-rat (Lewis & Tatken 1980)
650  orl-mus "
812  orl-rat, Anon 1986b
420  orl-rat, Anon 1986b
1414  orl-mus, Anon 1986b
280  orl-rat, 14d, Anon 1986b
 
EC50 values to microorganism, mg/l :
20.7  Microtox, Kaiser and Ribo 1985
 
LC50 values to crustaceans, mg/l :
10  96hr, Daphnia magna, Anon 1986b
 
EC50 values to crustaceans, mg/l :
13  24hr, Daphnia magna, Anon 1986b
14.5  24hr, Daphnia magna, Anon 1986b
 
NOEC values to crustaceans, mg/l :
0.32  21d, Daphnia magna Anon 1986b
0.64  21d, Daphnia magna, Anon 1986b
  --
0.19  21 d, rpd, Daphnia magna, AQUIRE 1994
 
LC50 values to fishes, mg/l :
20  48hr, Leuciscus idus melanotus,
8.3  96hr, Lepomis macrochirus
96hr, Salmo gairdneri
  Anon 1986b
  --
14.5  48hr, Oryzias latipes, MITI 1992

References
2349Alexander, M. & Lustigman, B.K. 1966. Effect of chemical structure on microbial degradation of substituted benzenes. J. Agr. Food Chem. 14: 410 - 413.
2358Anon 1986b. Beitrag zur Beurteilung von 19 gefährlichen Stoffen in oberirdischen Gewässern. Texte 10. Umweltbundesamt. pp. 163.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
3107AQUIRE 1993 -. Aquatic Toxity Information Retrieval Database. U.S.Environmental Protection Agency, Office of Pesticides and Toxic Substances, Washington, D.C.
3225Canton, J. H. et al. 1985. Regul. Toxicol. Pharmacol. 5: 123 - 131.
3266Corbett, M. D. & Corbett, B. R. 1981. Appl. Env. Microbiol. 41:942 - 949.
3249Deneer, J. W. et al. 1987. Aquatic Toxicol. 10: 115 - 129.
3133GEMS; 1986 -. Graphical Exposure Modeling System. FAP. Fate of Atmos Pollut.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
3045Hine, J. & Mookerjee, P. K. 1975. J. Org. Chem. 40: 292 - 298.
1855Hockenbury, M.R. & Grady,C.P.L. Jr. 1977. Inhibition of nitrification-effects of selected organic compounds. JWPCF, May.
3047Howard, P. H. 1989. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. I: Large Production and Priority Pollutants. Lewis Publishers, Inc. Chelsea. pp 574.
3250Hustert, K. et al. 1987. Chemosphere 16: 809 - 812.
2420Kaiser, K. L. E. and Ribo, J. M. 1985. QSAR of toxicity of chlorinated aromatic compounds. In: Tichy (Ed), M. QSAR in toxicology and xenobiochemistry. Elsevier, Amsterdam 27.
3245Kanno, S. & Nojima, K. 1979. Chemosphere 8: 225 - 232.
3134Kitano, M. 1978. Biodeg Bioaccum Test on Chem subs, OECD Tokyo Meeting Ref Book TSU-No. 3.
2100Lewis, R.J. & Tatken, R.L. 1980. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 81-116.
3267Lindgaard-Joergensen, P. & Jacobsen, B. N. 1986. In Comm. Eur. Communities, Eur. 10388. Org. Micropollut. Aquat. Environ. p. 429 - 439.
2960Lyman, W. J. et al. 1982. Handbook of Chemical Property Estimation Methods. Environmental behavior of organic compounds. McGraw-Hill New York.
3237Miller, G. C. & Crosby, D. G. 1983. Chemosphere 12: 1217 - 1228.
3105MITI 1992. Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Compild under the Safety Division Basic Industries Bureau Ministry of International Trade & Industry, Japan. Edited by Chemicals Inspection & Testing Institute, Japan.
3053Sasaki, S. 1978. The Scientif Aspects of the Chemical Substance Control Law in Japan in Aquatic Pollutants Transformation and Biological Effects. Hutzinger, O. et al. (eds.) Oxford Pergamon Press. pp. 283 - 98.
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.
2413Walker, J. D. 1987. Effects of chemicals on microorganisms. Journal WPCF 59 (6): 614 - 625.
2962Yalkowsky, S. H. et al. 1987. Arizona Database of Aqueous Solubility. U of Arizona.

 
 
© Copyright Environmental Administration