www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


13.7.2025

Data bank of environmental properties of chemicals


Chemical
2-chloroaniline
CAS-number :
95-51-2
 
Synonyms :
2-chlorophenylamine
2-kloorianiliini
o-aminochlorobenzene
o-chloroaniline
 
Sumformula of the chemical :
C6H6ClN
EINECS-number :
2024264
 
Uses :
Intermediate.
 
Molecular weight :
127.57
 
Spesicif gravity (water=1) :
1.213  at 20/4 °C
 
Vapor pressure, mmHg :
0.17  at 20 °C, Piacente et al. 1985
 
Water solubility, mg/l :
8000  MITI 1992
  --
3800  at 20 °C, Chiuo et al. 1982
 
Melting point, °C :
-14 
 
Boiling point, °C :
208.8 
208  208 - 210, MITI 1992
 
Log octanol/water coefficient, log Pow :
1.9 
1 - 9, Anon 1988
  --
1.9  Hansch & Leo 1985
 
Henry's law constant, Pa x m3/mol :
0.32  Anon 1988
  --
0.76  calc. Howard 1989
 
Volatilization :
The volatilition half-life of 2-chloroaniline from a
representative environmental pond (stagnant) has been estimated
to be 64 days (USEPA 1987).

Using th Henry's Law constant the volatilization half-life from
a model river (1 m deep) can be estimated to be 5.6 days
(Lyman et al. 1982).
 
Adsorption/desorption :
2-Chloroaniline has been observed to undergo rabid and
reversible covalent bonding with humic materials and clay in
water column and in the sediment (Howard 1989).
 
Mobility :
Equilibrium distribution:
        mass %
air      9.95
water   88.97
solid    1.08
(Anon 1988)
 
Other physicochemical properties :
Dissociation constant: 2.66 at 25 °C (Perrin 1972).
 
Photochemical degradation in air :
2-Chloroaniline absorbs ultraviolet light above 290 nm
indicating that direct environmental phtolysis is possible
(Sadtler).

The half-life for the vapor-phase reaction of 2-chloroaniline
with sunlight-produced hydroxyl radicals in a typical ambient
atmosphere has been estimated to be about 2 days cm3/mol-sec at
25 °C (GEMS 1987).
 
Photochemical degradation in water :
Irradiation of an aqueous solution of 2-chloroaniline in a
quartz tube with a fluorochemical lamp (wavelegths above 300
nm) resulted in a photodegradation half-life of 11.5 hours
(Kondo 1982).
 
Oxidation-reduction reactions :
Oxidation of aromatic amines can occur on clay surfaces, bur is
dependent on the exchangeable cationin the clay and the
presence of oxygen (USEPA 1987).
 
Total degradation in soil :
Decomposition by soil microflora: > 64 days (Verschueren 1983).

Incubation of 2-chloroaniline in soil for 14 days resulted in
formation of dichloroazobenzene, but no dichloroazobenzene was
formed using sterilized soil (Bartha et al. 1968).

When 2-chloroaniline was applied to soil there was an initial
rabid rate of dispappearance lasting 2 weeks followed by a much
more gradual rate of decline. 
The percentage of 2-chloroaniline
remaining after 2 and 10 weeks were 40 and 20, respectively.

While both chemical and biological processes are responsible
for the degradation. 
The chemical degradation is more
important. 
When 2-chloroaniline is released to soil, it will
undergo chemical bonding with humic materials, which can result
in its chemical alteration and prevent leaching (Howard 1989).
 
Total degradation in water :
Biodegradation:
2.7% by BOD
period: 14d
substance: 100 mg/l
sludge: 30 mg/l
(MITI 1992)

Results of standard biodegradtion tests for 2-chloroaniline
were reported as follows:
- Coupled units, 5-6% DOC removal
- Zahn-Wellens, 94% DOC removal
- MITI, 0% BODT
- Sturm 0% CO2 evolution, 9% DOC removal
- Closed bottle, 0% BODT
(Gerike & Fischer 1979).

A 36% BODT was measured for 2-chloroaniline over a 190 hr
incubation period with a Wasburg respirometer (Malaney 1960).
 
Ready biodegradability :
Confirmed to be non-biodegradable (Anon. 1987).
 
Other information of degradation :
Degradation by Aerobacter: 500 mg/l at 30 °C:
parent: 100 % ring disruption in 60 hr;
mutant: 100 % ring disruption in 18 hr (Verschueren 1983).

Various screening tests suggest that 2-chloroaniline is
generally resistant to biodegradation or biodegrades slowly.

Sigfinicant acclimation of microbes may be required for
biodegradation to become envirometally important (Howard 1989).
 
Bioconcentration factor, fishes :
5.4  5.4 - 9.0, 8w, Cyprinus carpio, conc 0.1 mg/l,
14  < 14 - 32, 8w, Cyprinus carpio, conc 0.01 mg/l,
32  MITI 1992
 
Other information of bioaccumulation :
Confirmed to be non-accumulative or low accumulative (Anon.
1987).

Log BCF of 2-chloroaniline in fish were experimentally
determined to be less than 2.0 using the Japanese MITI test
procedures (Kawasaki 1980).

2-Chloroaniline was found to have little or no bioconcentration
in carp (Sasaki 1978).

The log BCF of 2-chloroaniline has been theoretically estimatd
to be 1.3 (Canton et al. 1985).
 
LD50 values to birds in oral exposure, mg/kg :
100  100 - 562, orl-Agelaius phoeniceus
562 
1000  =,>1000, Sturnus vulgaris
1000  =,>1000, Coturnix coturnix
  Schafer et al. 1983
 
LC50 values to fishes, mg/l :
6.2  14 d, Poelicia reticulata
  Hermens et al. 1985
  --
6.3  48hr, Oryzias latipes, MITI 1992
  --
5.68  96 hr, Pimephales promelas, Geiger et al. 1986
  --
5.81  96 hr, Pimephales promelas, Brooke et al. 1984
 
EC50 values to fishes, mg/l :
5.68  96 hr, mbt, Pimephales promelas, Geiger et al. 1986
  --
5.81  96 hr, mbt, Pimephales promelas, Brooke et al. 1984

References
2357Anon 1988. Concentrations of industrial organic chemicals measured in the environment: The influence of physico - chemical properties, tonnage and use pattern. Technical report no 29. European chemical industry ecology & toxicology centre, ECETOC. pp. 105.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
3224Bartha, R. et al. 1968. Science 16: 582 - 583.
3295Brooke, L. T. et al. 1984. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas); Vol 1. Center for Lake Superior Environmental Studies University of Wisconsin-Superior, Superior, Wisconsin, U.S.A.
3225Canton, J. H. et al. 1985. Regul. Toxicol. Pharmacol. 5: 123 - 131.
2612Chiou, C. T., Schmedding, D. W. and Manes, M. 1982. Environ. Sci. Technol. 16: 4 - 10.
3294Geiger, D. L. et al. 1986. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas) Vol. 3. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, Wisconsin, U.S.A., 328.
3133GEMS; 1986 -. Graphical Exposure Modeling System. FAP. Fate of Atmos Pollut.
3151Gerike, P. & Fischer, W. K. 1979. Ecotox. Environ. Safety 3:159-73.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
577Hermens, J., Leeuwangh, P. & Musch, A. 1985a. Joint toxicity of mixtures of groups of organic aquatic pollutants to the guppy (Poecilia reticulata). Ecotox. Environm. Safety 9: 321 - 326.
3047Howard, P. H. 1989. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. I: Large Production and Priority Pollutants. Lewis Publishers, Inc. Chelsea. pp 574.
2846Kawasaki, M. 1980. Experiences with the test scheme under the Chemical Control Law of Japan: An Approach to structure-activity correlations. Ecotoxicol. Environ. Safety 4: 444 - 454.
3165Kondo, M. 1978. Simulation studies of degradation of chemicals in the environment: simulation studies of degradation of chemicals inthe water and soil; Environment agengy. Office of health studies Japan.
2960Lyman, W. J. et al. 1982. Handbook of Chemical Property Estimation Methods. Environmental behavior of organic compounds. McGraw-Hill New York.
3226Malaney, G. W. J. 1960. J. Water Pollut. Control Fed. 32: 1300 - 1311.
3105MITI 1992. Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Compild under the Safety Division Basic Industries Bureau Ministry of International Trade & Industry, Japan. Edited by Chemicals Inspection & Testing Institute, Japan.
3173Perrin, D. D. 1972. Dissociation constants of organic bases in aqueous solution; IUPAC Chemical Data Series; Supplement; London Buttersworth.
3227Piacente, V. et al. 1985. J. Chem. Eng. Data 30: 372 - 376.
3228Sadtler. 254 UV Philadelphia, PA: SP Sadtler & Sons.
3053Sasaki, S. 1978. The Scientif Aspects of the Chemical Substance Control Law in Japan in Aquatic Pollutants Transformation and Biological Effects. Hutzinger, O. et al. (eds.) Oxford Pergamon Press. pp. 283 - 98.
1743Schafer , E.W.Jr., Bowles, W.A.Jr., Hurlbut, J. 1983. The acute oral toxicity, repellency and hazard potential of 993 chemicals to one or more species of wild and domestic birds. Arch. Environ. Contam. Toxicol. 12: 355 - 382.
3229USEPA 1987. EXAMS II Computer Modeling System.
3230USEPA 1987. Health and Environmental Effects Document for Chloroanilines ECAO-CIN-G003 (Final Draft).
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.

 
 
© Copyright Environmental Administration