| Chemical |
Dibutyl phthalate |
| CAS-number : |
84-74-2 |
| |
| Synonyms : |
| 1,2-benzenedicarboxylic acid,dibutyl ester. |
| di-n-butylphthalate |
| di-n-butyyliftalaatti |
| Dibutyyliftalaatti |
| phthalic acid, dibutyl ester |
| |
| Sumformula of the chemical : |
| C16H22O4 |
| EINECS-number : |
| 2015574 |
| |
| Purity, % : |
| 100 |
|
| |
| Uses : |
Plasticizer manufacturing; plastics manufacturing; recycling
and processing.
Insect repellent for the impregnation of
clothing.
Explosives.
|
| |
| State and appearance : |
Colourless oily liquid will sink and associate with sediments.
Very little will dissolve.
|
| |
| Odor : |
Mild odour.
|
| |
| Molecular weight : |
278.38 |
| |
| Spesicif gravity (water=1) : |
| 1.048 |
|
| |
| Vapor density (air=1) : |
| 9.58 |
|
| |
| Vapor pressure, mmHg : |
| 0.1 |
115°C |
| 10 |
< 10, 25 °C |
| 200 |
287 °C |
| 0.000014 |
at 25 °C, Giam et al. 1980 |
| |
| Water solubility, mg/l : |
| 28 |
28 - 4000, 25 - 26°C |
| 4000 |
|
| 10.1 |
20 °C |
| 11.2 |
at 25 °C, Howard et al. 1985 |
| |
| Melting point, °C : |
| -35 |
|
| |
| Boiling point, °C : |
| 340 |
|
| |
| Flashing point, °C : |
| 157 |
|
| |
| Log octanol/water coefficient, log Pow : |
| 4.79 |
Anon. 1988 |
| 4.6 |
4.6 - 4.9, Anon. 1989 |
| 4.9 |
|
| 4.72 |
Hansch & Leo 1985 |
| |
| Henry's law constant, Pa x m3/mol : |
| 0.12 |
Anon. 1988 |
| 0.27 |
25 °C, Anon. 1989 |
| 0.048 |
calc., Lyman et al. 1982 |
| |
| Volatilization : |
The volatilization half-life for DBP from stirred seawater
solution 1 m deep is 28 days (Atlas et al. 1982).
Using the calculated Henry's Law constant, it is estimated that
the half-life for DBP in a river 1 m deep with a 1 m/sec
current and a 3 m/sec wind is 47 days days, with the rate being
controlled by the diffusion through the air (Lyman et al. 1982).
The Henry's Law constant of 0.27 Paxm3/mol indicates that DBP
will only slowly volatilize from surface waters, i.e. virtually
all of the DBP will reman in the water phase at equilibrium (EU
RA Report 2003).
|
| |
| Adsorption/desorption : |
The partition coefficient of DBP between montmorillonite,
kaolinite,and calsium montmorillonite and seawater was 40, 20
and 4, respectively at high concentrations (3-4 ppm) and 2, 4
and 36, respectively at low concentrations (ca 20 ppb)
(Sullivan et al. 1981).
The partition coefficient between marine sediment (ca 1%
organic carbon) and seawater was 149 (Bouwer et al. 1981).
|
| |
| Mobility : |
Despite its moderate adsorption to soil, DBP has been found in
ground water underlying rapid infiltration sites at high
concentrations (Tomsom et al. 1981).
DBP forms a 1:1 complex with fulvic acid which is a
water-soluble humic material formed from the decomposition of
plants.
The water soluble complex so formed may act as a
vehicle for the mobilization and transport of DBP as wellas
altering its reactivity (Matsuda & Schnitzer 1971).
|
| |
| Other physicochemical properties : |
Flammability: slight when exposed to heat or flame.
Toxic
combustion products: slight hazard.
Practically insoluble in
water (Sax 1986).
|
| |
| Photochemical degradation in air : |
Photooxidation half-life in air:
2.5d - 7.4hr, scientific judgement based upon estimated rate
data for hydroxyl radicals in air (Howard 1991).
Photochemically produced hydroxyl radicals in the atmosphere
will react with vapor phase DBP by aromatic ring addition and
hydrogen atom abstraction with an estimated half-life of
18.4 hr ((GEMS 1987).
Photooxidation by OH radiacals contributes to tj he elimination
of DBP from the atmosphere.
The experimental degradation rate
constant amounts to about 1.8x10-12 cm3/molxsec corresbonding
to a half-life of 21.4 hoursat an average OH concentration of
500,000 molecules/cm3.
Vapour phase reactions of DBP with
photochemically produced hydroxyl radicals were estimated with
a QSAR.
The overall OH rate constant for DBP was estimated to
be 8.7x10-12 cm3/molxsec.
This value corresponds to an
atmospheric half-life of about 1.8 days (EU RA Report 2003).
|
| |
| Photochemical degradation in water : |
Aquatic photolysis half-life:
144d, scientific judgement based upon estimated maximum
aqueous photolysis rate data (2.0 x 10-4 hr-1).
Photooxidation half life in water:
12.2yr - 2.4yr, scientific judgement based upon estimated rate
data for alkylperoxyl radicals in aqueous solution
(Howard 1991).
The estimated photolysis half-life in natural waters is 144
days.
The estimated half-life due to reaction with alkoxy
radicals in natural waters is 456 days (Wolfe et al. 1980).
|
| |
| Hydrolysis in water : |
Hydrolysis very slow (Giam et al. 1984).
First-order hydrolysis half-life:
10yr, based upon overall rate constant (1.0 x 10-2 mol-1 s-1)
at pH 7 and 30 °C (Howard 1991).
The hydrolysis of DBP at neutral pH has a half-life of 10 year.
(Callahan et al. 1979).
|
| |
| Hydrolysis in base : |
The hydrolysis rate increases with pH and at pH 9 the estimated
half-life is 76 days (Wolfe et al. 1980).
|
| |
| Half-life in air, days : |
| 3.1 |
3.1d - 7.4hr, |
| 0.3 |
scientific judgement based upon estimated photooxidation halflife in air |
| |
Howard 1991 |
| |
| Half-life in soil, days : |
| 180 |
> 6 months, Shea et al. 1982 |
| |
-- |
| 23 |
23d - 2d, |
| 2 |
scientific judgement based upon unacclimated aerobic soil grad sample data |
| |
Howard 1991 |
| |
| Half-life in water, days : |
| 14 |
14d - 1d, |
| 1 |
in surface water: scientific judgement based upon unacclimated aerobic river die-away test and freshwater/sediment grab sample data, |
| 23 |
23d - 2d, |
| 2 |
in ground water: scientific judgement based upon estimated unacclimated aqueous aerobic and anaerobic biodegradation half-lives |
| |
Howard 1991 |
| |
| Aerobic degradation in soil : |
Aerobic degradation in freshwater hydrosoil: 98 % alter 5 days
incubation (Verschueren 1983).
|
| |
| Aerobic degradation in water : |
Aerobic half-life:
23d - 1d, scientific judgement based upon unacclimated aerobic
river die-away test and soil grab sample data (Howard 1991).
|
| |
| Anaerobic degradation in water : |
Anaerobic half-life:
23d - 2d, scientific judgement based upon unacclimated
anaerobic grab sample data for soil and sediment (Howard 1991). |
| |
| Ready biodegradability : |
Confirmed to be biodegradable (Anon. 1987). |
| |
| Other information of degradation : |
Degradation of di-butyl-phthalate:
*-------------------------------------------------------------*
ENVIRONMENT INIT.CONC REDOX- TEMP DEGRADATION REF
mg/l COND. °C %/day t1/2
*-------------------------------------------------------------*
water 5 aerobic 25 100/7 a
water 10 aerobic 25 100/7 a
freshwater sediment 1 aerobic 22 5/1 b
freshwater sediment 1 aerobic 22 95/7 b
freshwater sediment 1 aerobic 22 97/30 b
freshwater sediment 1 anaerobic 22 0/1 b
freshwater sediment 1 anaerobic 22 47/7 b
freshwater sediment 1 anaerobic 22 98/30 b
sludge 100 aerobic 30 >90/20 c
soil 0.00045 aerobic 20 0/14 d
soil (adapted) 0.00045 aerobic 20 75/14 d
soil 500 aerobic 30 100/15 e
soil 500 anaerobic 30 60/30 e
soil 1000 aerobic 4 2/53 f
soil 1000 aerobic 23 32/53 f
soil 1000 aerobic 23 88/200 f
soil 1000 aerobic 30 78/53 f
soil 1000 anaerobic 23 69/53 f
soil 1000 anaerobic 23 98/200 f
soil 1.4 aerobic 25 100/1 g
soil (sterile) 1.8 aerobic 25 70/5 g
soil 1.4 aerobic 25 100/2 g
soil (sterile) 1.1 aerobic 25 72/5 g
soil 5.1 aerobic 10 - 5.6 h
*-------------------------------------------------------------*
a) Tabak et al. 1981 e) Shanker et al. 1985
b) Johnson & Lulves 1975 f) Inman et al. 1984
c) Engelhardt et al. 1977 g) Russell et al. 1985
d) Hutchins & Ward 1984 h) Lökke 1984
(Anon 1987b).
Easily biodegradable both in aerobic and anaerobic ways (Kaare
Jensen et al. 1987).
Easily degradable (Anon 1989).
In sediment and soil relatively slow degradation (Giam et al
1984).
Degradation products of special interest: monobutyl phthalate,
assumed toxic metabolite in Artemia (Hudson et al. 1981).
DBP is significantly biodegraded in biodegradation tests
utilizing sewage and activated sludge inoculum.
In a shake
flask biodegradation test after 28 days 68 to >99% of the DBP
had disappeared and 80.6 to >99% was converted to CO2.
The lag
period averaged 4.5 days (Sugatt et al. 1984) (Howard 1989).
In an aerobic pondwater-sediment mixture 97% degradation was
noted in 5 days.
The intermediate products of degradation were
the mono-n-butyl ester and phthalic acid.
Biodegradation under
anaerobic conditions was slower with 41% and 98% degradation
occurring after 7 and 30 days, respectively, in a
sediment-pond water mixture (Johnson & Lulves 1975).
DBP is completely mineralized in digested sludge in 2 weeks
under anaerobic conditions and 28% was lost after 7 days ina
composting mixture (Shelton et al. 1984) (Snell Group 1982).
There is ample evidence that DBP is ready biodegradable under
aerobic conditions.
Also a BOD5:COD ratio of 0.63 obtained with
a non-adapted inoculum indicates that DBP may be regarded as
readily biodegradable.
It is also demostrated that DBP is
readily biodegradable in a modified Sturm test (EU RA Report
2003).
|
| |
| Other information of metabolism : |
Food chain contamination potential: ester is taken up rapidly
and magnified in crustacea, but clears after 10 days.
Negative
(Sax 1986).
|
| |
| Bioconcentration factor, fishes : |
| 12 |
24hr, Cyprinodon |
| |
Wofford et al. 1981 |
| |
| Other information of bioaccumulation : |
DBP is rabidly metabolized in fish within 4 hr, 75% of the residue
from a channel catfish was inthe form of monobutyl phthalate
(Johnson et al. 1977).
The log BCF in American oyster, Brown shrimp and Sheepshead minnow
were 1.50, 1.22 and 1.07, respectively
(Wofford et al.1981).
Bioconcentration factor (crustaceans):
5000, Palaemonetes kadiakensis (Verschueren 1983).
140, 10d, Gammarus pulex (Thuren & Woin 1988).
1400, 14d, Gammarus pseudolimnaeus, total
(Mayer & Sanders 1973).
5000, 7d, Daphnia
6500, 7d, Gammarus pseudolimnaeus
(Sanders et al. 1973).
Bioconcentration factor (other organisms):
6600, 7d, Chironomus (Sanders et al. 1973).
The high Kow of DBP indicates that the substance has a
potential for bioaccumulation. However the actual degree
of bioaccumulation in vivo will be determined by the
metabolisation and the elimination rate of the substance (EU RA Report 2003).
|
| |
| LD50 values to mammals in oral exposure, mg/kg : |
| 8000 |
orl-rat, Lewis & Sweet 1984 |
| |
-- |
| 1000 |
orl-rbt, Sax 1986 |
| 12000 |
orl-rat |
| 5.282 |
orl-mus |
| |
| LD50 values to mammals in non-oral exposure , mg/kg : |
| 3050 |
ipr-rat, Sax 1986 |
| 3570 |
ipr-mus |
| 720 |
ivn-mus |
| |
| LC50 values to mammals in inhalation exposure, mg/m3 : |
| 7.9 |
ihl-rat, Lewis & Sweet 1984 |
| |
-- |
| 2.1 |
ihl-mus, Sax 1986 |
| 9620 |
ihl-mam |
| |
| TDLo values to mammals in oral exposure, mg/kg : |
| 8.4 |
orl-rat, 7d male, teratogenic effect |
| 2520 |
orl-rat, 1-21d preg, teratogenic eff. |
| 12600 |
orl-rat, 1-21d preg, teratogenic eff. |
| 1440 |
orl-mus, 1-18d preg, teratogenic eff. |
| 12000 |
orl-mus, 1-18d preg, teratogenic eff. |
| 38000 |
orl-mus, 1-18d preg, teratogenic eff. |
| 16800 |
orl-mus, 7d male, teratogenic effect |
| 14000 |
orl-gpg, 7d male, teratogenic effect |
| |
Sax 1986 |
| |
-- |
| 140 |
orl-hmn |
| |
Sax 1986 |
| |
| TDLo values to mammals in non-oral exposure , mg/kg : |
| 1017 |
ipr-rat, 5-15d preg, teratogenic effect |
| 305 |
ipr-rat, 5-15d preg, teratogenic effect |
| 6000 |
ipr-rat, 3-9d preg, teratogenic effect |
| |
Sax 1986 |
| |
| Effects on physiology of mammals : |
Induces many biochemical effects, e.g. increases liver
cytochrome P-450, reduces serum albumine, changes active K-ion
transportation via membranes (Giam et al. 1984).
|
| |
| Health effects : |
Man, oral, lowest dose which affects the central nervous
system: 140 mg/kg (Sax 1986).
Direct contact; low, eye, skin (Sax 1986).
|
| |
| Mutagenicity : |
Negative in Drosophila-test.
No x-chromosome mutations noted in
male fluit flies fed sublethal doses (Sax 1986).
cyt, ham, fbr, 30 mg/l, 24 hr (Sax 1986).
|
| |
| Teratogenicity : |
Positive.
Teratogenic effects demonstrated in rats (Sax 1986).
|
| |
| Effects on plants : |
Plant (corn, Zea mays) heights and shoot wts. were not
significantly reduced at 200 ppmw; but at 2000 ppmw DBP, plant
height was reduced by 17 % and plant shoot wt. by 25 %.
The low
levels (1.24 ppm) of DBP found in plants grown in soil
containing 2000 ppmw (Shea et al. 1982).
DP affected soybean germination at 200 ppm (dry soil basis)
(Overcash et al. 1982).
Induces chlorosis in green leafs (Løkke & Rasmussen 1983).
|
| |
| Effects on wastewater treatment : |
May flog filters and exchange beds (Sax 1986).
|
| |
| EC50 values to microorganism, mg/l : |
| 10.9 |
Microtox, Tarkpea et al. 1986 |
| |
| LC50 values to algae, mg/l : |
| 0.02 |
0.02 - 0.6, srv,act, 96 hr, Gymnodium |
| 0.6 |
breve, Wilson et al. 1978 |
| |
| EC50 values to algae, mg/l : |
| 3 |
> 3, Chlorella, Melin & Agneus 1983 |
| |
-- |
| 0.75 |
96hr, Selenastrum, Cox & Moran 1984 |
| |
-- |
| 0.5 |
0.5 - 0.7, 14 - 22 permillage |
| 0.7 |
Skeletonema |
| 0.7 |
> 0.7, 27 permillage, Skeletonema |
| |
Medlin 1980 |
| |
-- |
| 0.1 |
96hr, Gymnodinium, grw |
| |
Wilson et al. 1978 |
| |
-- |
| 1.2 |
72 hr, Scenedesmus subspicatus |
| 3.5 |
48 hr, biomass, Scenedesmus subsbicatus |
| 9 |
48 hr, growth rate, Scenedesmus subspicatus |
| 0.0034 |
0.0034 - 0.2 mg/l, 96 hr, Gymnodium breve |
| 0.2 |
EU RA Report 2003 |
| |
| NOEC values to algae, mg/l : |
| 2.8 |
7 d, Selenastrum capricornutum |
| 0.8 |
10 d, Selenastrum capricornutum |
| 0.2 |
8 d, Dunaliella parva |
| 2 |
4 d, Thalassiosira pseudomona |
| |
EU RA Report 2003 |
| |
| LC50 values to crustaceans, mg/l : |
| 0.1 |
0.1 - 1.0, 17d, Palaemonetes pugio, |
| 1 |
larvae |
| 10 |
10 - 50, 24hr, Palaemonetes pugio |
| 50 |
Laughlin et al. 1978 |
| |
-- |
| 1.7 |
96hr, Nitocra, Linden et al. 1979 |
| |
-- |
| 2.1 |
96hr, Gammarus pseudolimnaeus |
| |
Mayer & Sanders 1973 |
| |
-- |
| 10 |
> 10, 96hr, crayfish |
| 2.1 |
96hr, scud |
| |
Sax 1986 |
| |
-- |
| 0.8 |
96 hr, Mysidopsis bahia, EU RA Report 2003 |
| |
| EC50 values to crustaceans, mg/l : |
| 3.4 |
48hr, Daphnia magna |
| |
Cox & Moran 1984 |
| |
-- |
| 3.4 |
48 hr, Daphnia magna |
| 5.2 |
48 hr, Daphnia magna |
| 0.76 |
48 hr, Chironomus plumosus |
| 5.8 |
96 hr, Paratanytarsus parthenogenetica |
| 1.05 |
21 d, Daphnia magna |
| 0.54 |
7 d, Dugesia japonica |
| |
EU RA Report 2003 |
| |
| NOEC values to crustaceans, mg/l : |
| 1 |
21 d, Daphnia magna |
| 0.56 |
16 d, Daphnia magna |
| 0.1 |
10 d, Gammarus pulex |
| |
EU RA Report 2003 |
| |
| LC50 values to fishes, mg/l : |
| 1.2 |
96hr, Lepomis macrochirus, |
| |
Buccafusco et al. 1981 |
| |
-- |
| 3 |
96hr, static, Pimephales |
| 0.92 |
96hr, dynamic, Pimephales |
| 1.6 |
96hr, dynamic, Salmo gairdneri |
| 0.85 |
96hr, static, Lepomis |
| |
Cox & Moran 1984 |
| |
-- |
| 4.3 |
48hr, Orizias latipes |
| |
Yoshioka et al. 1986 |
| |
-- |
| 1.3 |
96hr, Pimephales promelas |
| 0.73 |
96hr, Lepomis macrochirus |
| 2.91 |
96hr, Ictalurus punctatus |
| 6.47 |
96hr, Salmo gairdneri |
| |
Sax 1986 |
| |
-- |
| 0.85 |
96 hr, Pimephales promelas |
| 1.1 |
96 hr, Pimephales promelas, Geiger et al. 1985 |
| |
-- |
| 2.2 |
96 hr, Brachydanio rerio |
| 0.9 |
96 hr, flow through, Pimephales promelas |
| 2 |
96 hr, flow through, Pimephales promelas |
| 0.46 |
96 hr, flow through, Ictalurus punctatus |
| 0.9 |
96 hr, static, Lepomis macrochirus |
| 0.35 |
96 hr, flow through, Perca flavescens |
| 7.3 |
96 hr, static, Leuciscus idus |
| |
EU RA Report 2003 |
| |
| EC50 values to fishes, mg/l : |
| 0.85 |
96 hr, mbt, Pimephales promelas |
| 1.1 |
96 hr, mbt, Pimephales promelas, Geiger et al.1985 |
| |
| NOEC values to fishes, mg/l : |
| 0.56 |
0.56 - 1.0, Pimephales, embryo-larvae |
| 1 |
Cox & Moran 1984 |
| |
| Other information of water organisms : |
EC50, 24 hr, 2.2 mg/l, rpd, Tetrahymena pyriformis (Yoshioka et
al. 1985).
EC50, 96 hr, 5.8 mg/l, Chironomus sp.
(Cox & Moran 1984).
Corophium sp., colonisation, 0.34 mg/l (Tagatz et al. 1983).
Daphnia, reproduction, reversible effect (Springborn 1984).
Daphnia, reproduction (McCarthy & Whitmore 1985).
|
| |
| Other effects on aquatic ecosystems : |
Microcosmos, 14 d, effective concentration, 3.7 mg/l (Tagatz et
al. 1983).
|
| |
| Other information : |
Persistency: Certain bacterial strains will degrade n-butyl
phthalate but only when the initial concentrations are low. -
Degradation will take place in freshwater hydrosoil also
through the enzymatic action of microorganisms.
Anaerobic
conditions will slow biodegradation (Sax 1986).
Air pollution: There will be no appreciable vapor.
At high
temperatures, there will be carbon dioxide (Sax 1986).
|
References |
| 2357 | Anon 1988.
Concentrations of industrial organic chemicals
measured in the environment: The influence of physico - chemical
properties, tonnage and use pattern.
Technical report no 29.
European chemical industry ecology & toxicology centre, ECETOC.
pp. 105. |
| 1848 | Anon. 1987a.
The list of the existing chemical substances tested
on biodegradability by microorganisms or bioaccumulation in
fish body by Chemicals Inspection & Testing Institute.
Ministry
of International Trade and Industry, MITI.
Japan. |
| 2333 | Anon. 1987b.
Nedbrydelighed af miljøfremmede organiske stoffer.
Utredningsrapport U1.
Lossepladsprojektet. |
| 2285 | Anon. 1989.
Miljöfarliga ämnen - exempellista och vetenskaplig
dokumentation. 303 p.
Stockholm.
Rapport från
kemikalieinspektionen (KEMI) 10. |
| 2661 | Atlas, E., Foster, R. and Giam, C.
S. 1982.
Environ.
Sci.
Technol. 16: 283 - 286.
|
| 2588 | Benckiser, G. & Ottow, J.C.G. 1982.
Metabolism of the
plasticizer di-n-butyl phthalate by Pseudomonas
pseudoalacaligenes under anaerobic conditions with nitrate as
the only electron acceptor.
Appl.
Environ.
Microbiol. 44: 576. |
| 3319 | Bouwer, E.
J. et al. 1981.
Water Res. 15: 151 - 159.
|
| 207 | Buccafusco, R.J., Ells, S.J. & LeBlanc, G.A. 1981.
Acute
toxicity of priority pollutants to bluegill (Lepomis
macrochirus).
Bull.
Environ.
Contam.
Toxicol. 26: 446 - 452. |
| 2609 | Callahan, M.
A., Slimak, M.
W., Gabel N.
W:, May, I.
P.,
Fowler, C.
F., Freed, J.
R.,Jennings, P., Durfee, R.
L.,
Whitmore, F.
C., Maestri, B., Mabey, M.
R., Holt, B.
R. and
Gould, C. 1979.
Waterrelated environmental fate of 129 priority
pollutants.
Vol II.
Halogenated aliphatic hydrocarbons,
halogenated ethers, monocyclic aromatics, phthalate esters,
polycyclic aromatic hydrocarbons, nitrosamines and
miscellenious compounds.
EPA - 440/4 - 79 -029b.
|
| 2595 | Cox, G.V. & Moran, E.J. 1984.
Summary report - Environmental
studies - Phase I, Generation of environmental fate and effects
data base on 14 phthalate esters.
Chemical Manufacturers
Association, Washington, D.C. |
| 2587 | Eaton, R.W. & Ribbons, D.W. 1982.
Utilisation of phthalate
esters by Micrococci.
Arch.
Microbiol. 132: 185. |
| 2407 | Engelhardt, G., Tillmanns, G., Wallnöfer, P.R. & Hutziger, D.
1977.
Biodegradation of di-iso-butyl phthalate and related
dialkyl phthalates by Penicillium.
Chemosphere 6: 347 - 354. |
| 3354 | EU RA Report 2003.
Existing Substances: dibutyl phthalate.
European Union Risk Assessment Report (Vol 29).
Institute for
Health and Consumer Protection.
European Chemicals Bureau.
European Communities.
|
| 3296 | Geiger, D.
L. et al. 1985.
Acute toxicities of organic
chemicals to fathead minnows (Pimephales promelas) Vol. 2.
Center for Lake Superior Environmental Studies, University of
Wisconsin-Superior, Superior, Winconsin, U.S.A. 326.
|
| 3133 | GEMS; 1986 -.
Graphical Exposure Modeling System.
FAP.
Fate of
Atmos Pollut.
|
| 3320 | Giam, C.
S. et al. 1980.
Atmos.
Environ. 14: 65 - 69.
|
| 2584 | Giam, C.S., Atlas, E., Powers, M.A. & Leonard, J.E. 1984.
Phthalatic acid esters.
In: Hutzinger, O.
(Ed.)
Handbook of
Environmental Chemistry, Springer-Verlag, Vol.3, Part C, p.67. |
| 2958 | Hansch, C and Leo, A.
J. 1985.
Medchem Project Issue No 26.
Claremont C.A.
Pomona College. |
| 3047 | Howard, P.
H. 1989.
Handbook of Environmental Fate and
Exposure Data for Organic Chemicals.
Vol.
I: Large Production
and Priority Pollutants.
Lewis Publishers, Inc.
Chelsea. pp 574.
|
| 3220 | Howard, P.
H. et al. 1985.
Environ.
Toxicol.
Chem. 4: 653 - 661.
|
| 3120 | Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. &
Michalenko, E.M., Handbook of Environmental Degradation Rates,
1991.
Lewis Publicers, Inc., Chelsea, Michigan, U.S.A.,
pp. 725.
|
| 2589 | Hudson, R.A., Austerberry, C.F. & Bagshaw, J.C. 1981.
Phthalate
ester hydrolases and phthalate ester toxicity in synchronously
developing larvae of the brine shrimps (Artemia).
Life Sci.
29(18): 1865 - 1872. |
| 2341 | Hutchins, S.R. & Ward, C.H. 1984.
A predictive laboratory study
of trace organic contamination of groundwater: preliminary
results.
J.
Hydrol. 67: 223 - 233. |
| 2411 | Inman, J.C., Strachaw, S.D., Sommers, L.E. & Nelson, D.W. 1984.
The decomposition of phthalate esters in soil.
J.
Environ.
Sci.
Health., Part B., Pestic.
Food.
Contam.
Agric.
Wastes 19: 245 -
257. |
| 3321 | Johnson, B.
T. et al. 1977.
In fate of pollutants in the air
and water environment.
Suffet, S.
H. ed.
John Wiley & Sons NY
p. 422.
|
| 1879 | Johnson, B.T. & Lulves, W. 1975.
Biodegradation of
di-n-butyl phthalate and di-2-ethyl-hexyl phthalate in
freshwater hydrosoil.
J.
Fish.
Res.
Bd.
Can. 32: 333 - 339. |
| 1879 | Johnson, B.T. & Lulves, W. 1975.
Biodegradation of
di-n-butyl phthalate and di-2-ethyl-hexyl phthalate in
freshwater hydrosoil.
J.
Fish.
Res.
Bd.
Can. 32: 333 - 339. |
| 2585 | Kaare Jensen, S., Nielsen, M., Riber, H. & Skaarup, J. 1987.
Nedbrydelighed af miljøfremmede organiske stoffer.
Utredningsrapport U1, Lossepladsprojektet, COWI consult,
København. |
| 785 | Laughlin, R.B.,Jr., Neff, J.M., Hrung, Y.C., Goodwin,
T.C. & Gian, C.S. 1978.
The effects of three phthalate
esters on the larval development of the grass shrimp
palaemonetes pugio (Holthuis).
Water, Air and Soil Pollut. 9:
323 - 336. |
| 1589 | Lewis, R.J. & Sweet, D.V. 1984.
Registry of toxic effects of
chemical substances.
National Institute for Occupational Safety
and Health.
No. 83-107-4. |
| 831 | Linden, E., Bengtsson, B-E., Svanberg, O. & Sundström, G.
1979.
The acute toxicity of 78 chemicals and pesticide
formulations against two brackish water organisms, the
bleak (Alburnus alburnus) and the harpacticoid Nitocra
spinipes.
Chemosphere 11/12: 843 - 851. |
| 2960 | Lyman, W.
J. et al. 1982.
Handbook of Chemical Property
Estimation Methods.
Environmental behavior of organic
compounds.
McGraw-Hill New York. |
| 2601 | Løkke, H. & Rasmussen, L. 1983.
Phytotoxicological effects of
di(2-ethylhexyl)phthalate and di(n-butyl)phthalate on higher
plants in laboratory and field experiments.
Environ.
Poll.
Ser.
A 32(3): 179 - 199. |
| 2351 | Løkke, H. 1984.
Organisk-kemiske stoffers skæbne og effekt i
planter og jord.
Licentiat afhandling under det
naturvidenskabelige fakultet ved Københavns universitet. |
| 3322 | Matsuda, K & Schnitzer, B. 1971.
Bull.
Environ.
Contam.
Toxicol. 6: 200 - 204.
|
| 2591 | Mayers, F.L. & Sanders, H.D. 1973.
Toxicology of phthalic acid
esters in aquatic organisms.
Environ.
Health Perspect. 3: 153 -
157. |
| 2600 | McCarthy, J.F. & Whitmore, D.K. 1985.
Chronic toxicity of
di-n-butyl- and di-n-octyl-phthalate to Daphnia magna and the
fathead minnow.
Environ.
Toxicol.
Chem. 4(2): 167 - 179. |
| 2596 | Medlin, L.K. 1980.
Effects of dibutylphthalate and salinity on
the growth of the diatom Skeletonema costatum.
Bull.
Environ.
Contam.
Toxicol. 25(1): 75 - 78. |
| 2594 | Melin, C. & Egneus, H. 1983.
Effect of dibutylphthalate on
growth and photosynthesis in algae and on isolated organelles
from higher plants.
Physiol.
Plant. 59(3): 461 - 466. |
| 2511 | Nordic 1988.
Environmental hazard classification of chemicals.
Status report from the Joint Nordic Project, December 19, 1988,
Kemikalieinspektionen, Solna. |
| 44 | Overcash, M.R., Weber, J.B. & Miles, M.L. 1982.
Behaviour of
organic priority pollutants in the terrestrial system;
di-n-butyl phthalate ester, toluene, and 2,4-dinitrophenol.
Rep.
Water Resour.
Res.
Inst.
Univ.
N.C., Vol. 171, 103 pp. |
| 2593 | Ray, L.E., Murray, H.E. & Giam, C.S. 1983.
Organic pollutants
in marine samples from Portland, Maine.
Chemosphere 12(7/8):
1031 - 1038. |
| 2412 | Russell, D.J., McDuffie, M. & Fineberg, S. 1985.
The effect of
biodegradation on the determination of some chemodynamic
properties of phthalate esters.
J.
Environ.
Sci.
Health., Part
A 20: 927 -942. |
| 1227 | Sanders, H.O., Mayer, F.L.
Jr. & Walsh, D.F. 1973.
Toxicity residue dynamics and reproductive effects
phthalate esters in aquatic invertebrates.
Environ.
Res. 6:
84. |
| 2147 | Sax, I. 1986.
Hazardous chemicals information annual No. 1.
Van
Nostrand Reinhold Information Services, New York. 766 s. |
| 2409 | Shanker, R., Ramakrishna, C. & Seth, P.K. 1985.
Degradation of
some phthalic acid esters in soil.
Environ.
Pollut.
Ser.
A.
Ecol.
Biol. 39: 1 - 8. |
| 2586 | Shea, P.J., Weber, J.B. & Overcash, M.R. 1982.
Uptake and
phytotoxicity of di-n-butyl phthalate in corn (Zea mays).
Bull.
Environ.
Contam.
Toxicol. 29(2): 153 - 158. |
| 3222 | Shelton, D.
R. et al. 1984.
Env.
Sci Tech. 18: 93 - 97.
|
| 3323 | Snell Environmental Group Inc. 1982.
Rate of biodegradation of
toxic organic compounds while in contact with organics which
are actively composting p. 100 NSF/CEE 82024.
|
| 2599 | Springborn Bionomics, Inc. 1984.
Chronic toxicity of fourteen
phthalate esters to Daphnia magna.
Chemical Manufacturers
Association, Washington, D.C. |
| 3324 | Sugatt, R.
H. et al. 1984.
Appl.
Environ.
Microbiol. 47: 601 -
606.
|
| 3325 | Sullivan, K.
F. et al. 1981.
Anal.
Chem. 53: 1718 - 1719.
|
| 2335 | Tabak, H.H., Quave, S.A., Mashni, C.I. & Barth, E.F. 1981.
Biodegradability studies with organic priority pollutant
compounds.
Journal WPCF. 53: 1503 - 1518.
|
| 2598 | Tagatz, M.E., Deans, D.H., Moore, J.C. & Plaia, G.R. 1983.
Alterations in composition of field- and laboratory-developed
estuarine benthic communities exposed to di-n-butyl phthalate.
Aquat.
Toxicol. 3(3): 239 - 248. |
| 2418 | Tarkpea, M. et al. 1985.
Comparison of the Microtox test with
the 96-Hr LC50 for the Harpacticoid Nitocra spinipes.
Ecotoxicol.
Environ.
Safety 11: 127. |
| 2590 | Thuren, A. & Woin, P. 1988.
Effects of phthalate esters on the
locomotor activity of the freshwater amphipod Gammarus pulex.
In: Thurén, A., Phthalate Esters in the Environment, Dissert.,
Lund University. |
| 3326 | Tomson, M.
B. et al. 1981.
Water Res. 15: 1109 - 1116.
|
| 1468 | Verschueren, K. 1983.
Handbook of environmental data of
organic chemicals.
Van Nostrand Reinhold Co.
Inc., New York.
1310 s. |
| 2413 | Walker, J.
D. 1987.
Effects of chemicals on microorganisms.
Journal WPCF 59 (6): 614 - 625. |
| 1552 | Wilson, W.B., Glam, C.S., Goodwin, T.E., Aldrich, A.,
Carpenter, V. & Hrung, Y.C. 1978.
The toxicity of phthalates to
the marine dinoflagellate Gymnodinium breve.
Bull.
Environm.
Contam.
Toxicol. 20: 149 - 154. |
| 2592 | Wofford, H.W., Wilsey, C.D., Neff, G.S., Giam, C.S. & Neff,
J.M. 1981.
Bioaccumulation and metabolism of phthalic esters by
oysters, brown shrimp and sheepshead minnows.
Ecotoxicol.
Environ.
Safety 5: 202. |
| 2592 | Wofford, H.W., Wilsey, C.D., Neff, G.S., Giam, C.S. & Neff,
J.M. 1981.
Bioaccumulation and metabolism of phthalic esters by
oysters, brown shrimp and sheepshead minnows.
Ecotoxicol.
Environ.
Safety 5: 202. |
| 3327 | Wolfe, N.
L. et al. 1980.
Chemosphere 9: 393 - 402.
|
| 2597 | Yoshioka, Y., Ose, Y. & Sato, T. 1986b.
Correlation of five
test methods to assess chemical toxicity and relation to
physical properties.
Ecotoxicol.
Environ.
Safety 12: 15 - 21. |
| 1766 | Yoshioka, Y., Ose, Y. & Sato,T. 1985.
Testing the toxicity of
chemicals with Tetrahymena pyriformis.
Sci.
Total.
Environ.
43:149. |