www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


5.12.2025

Data bank of environmental properties of chemicals


Chemical
Dibutyl phthalate
CAS-number :
84-74-2
 
Synonyms :
1,2-benzenedicarboxylic acid,dibutyl ester.
di-n-butylphthalate
di-n-butyyliftalaatti
Dibutyyliftalaatti
phthalic acid, dibutyl ester
 
Sumformula of the chemical :
C16H22O4
EINECS-number :
2015574
 
Purity, % :
100 
 
Uses :
Plasticizer manufacturing; plastics manufacturing; recycling
and processing. 
Insect repellent for the impregnation of
clothing. 
Explosives.
 
State and appearance :
Colourless oily liquid will sink and associate with sediments.

Very little will dissolve.
 
Odor :
Mild odour.
 
Molecular weight :
278.38
 
Spesicif gravity (water=1) :
1.048 
 
Vapor density (air=1) :
9.58 
 
Vapor pressure, mmHg :
0.1  115°C
10  < 10, 25 °C
200  287 °C
0.000014  at 25 °C, Giam et al. 1980
 
Water solubility, mg/l :
28  28 - 4000, 25 - 26°C
4000 
10.1  20 °C
11.2  at 25 °C, Howard et al. 1985
 
Melting point, °C :
-35 
 
Boiling point, °C :
340 
 
Flashing point, °C :
157 
 
Log octanol/water coefficient, log Pow :
4.79  Anon. 1988
4.6  4.6 - 4.9, Anon. 1989
4.9 
4.72  Hansch & Leo 1985
 
Henry's law constant, Pa x m3/mol :
0.12  Anon. 1988
0.27  25 °C, Anon. 1989
0.048  calc., Lyman et al. 1982
 
Volatilization :
The volatilization half-life for DBP from stirred seawater
solution 1 m deep is 28 days (Atlas et al. 1982).

Using the calculated Henry's Law constant, it is estimated that
the half-life for DBP in a river 1 m deep with a 1 m/sec
current and a 3 m/sec wind is 47 days days, with the rate being
controlled by the diffusion through the air (Lyman et al. 1982).

The Henry's Law constant of 0.27 Paxm3/mol indicates that DBP 
will only slowly volatilize from surface waters, i.e. virtually 
all of the DBP will reman in the water phase at equilibrium (EU 
RA Report 2003).
 
Adsorption/desorption :
The partition coefficient of DBP between montmorillonite,
kaolinite,and calsium montmorillonite and seawater was 40, 20
and 4, respectively at high concentrations (3-4 ppm) and 2, 4
and 36, respectively at low concentrations (ca 20 ppb)
(Sullivan et al. 1981).

The partition coefficient between marine sediment (ca 1%
organic carbon) and seawater was 149 (Bouwer et al. 1981).
 
Mobility :
Despite its moderate adsorption to soil, DBP has been found in 
ground water underlying rapid infiltration sites at high 
concentrations (Tomsom et al. 1981).

DBP forms a 1:1 complex with fulvic acid which is a 
water-soluble humic material formed from the decomposition of 
plants. 
The water soluble complex so formed may act as a 
vehicle for the mobilization and transport of DBP as wellas 
altering its reactivity (Matsuda & Schnitzer 1971).
 
Other physicochemical properties :
Flammability: slight when exposed to heat or flame. 
Toxic
combustion products: slight hazard. 
Practically insoluble in
water (Sax 1986).
 
Photochemical degradation in air :
Photooxidation half-life in air:
2.5d - 7.4hr, scientific judgement based upon estimated rate
data for hydroxyl radicals in air (Howard 1991).

Photochemically produced hydroxyl radicals in the atmosphere
will react with vapor phase DBP by aromatic ring addition and
hydrogen  atom abstraction with an estimated half-life of
18.4 hr ((GEMS 1987).

Photooxidation by OH radiacals contributes to tj he elimination 
of DBP from the atmosphere. 
The experimental degradation rate 
constant amounts to about 1.8x10-12 cm3/molxsec corresbonding 
to a half-life of 21.4 hoursat an average OH concentration of 
500,000 molecules/cm3. 
Vapour phase reactions of DBP with 
photochemically produced hydroxyl radicals were estimated with 
a QSAR. 
The overall OH rate constant for DBP was estimated to 
be 8.7x10-12 cm3/molxsec. 
This value corresponds to an 
atmospheric half-life of about 1.8 days (EU RA Report 2003).
 
Photochemical degradation in water :
Aquatic photolysis half-life:
144d, scientific judgement based upon estimated maximum
aqueous photolysis rate data (2.0 x 10-4 hr-1).

Photooxidation half life in water:
12.2yr - 2.4yr, scientific judgement based upon estimated rate
data for alkylperoxyl radicals in aqueous solution
(Howard 1991).

The estimated photolysis half-life in natural waters is 144 
days. 
The estimated half-life due to reaction with alkoxy 
radicals in natural waters is 456 days (Wolfe et al. 1980).
 
Hydrolysis in water :
Hydrolysis very slow (Giam et al. 1984).

First-order hydrolysis half-life:
10yr, based upon overall rate constant (1.0 x 10-2 mol-1 s-1)
at pH 7 and 30 °C (Howard 1991).

The hydrolysis of DBP at neutral pH has a half-life of 10 year. 

(Callahan et al. 1979).
 
Hydrolysis in base :
The hydrolysis rate increases with pH and at pH 9 the estimated 
half-life is 76 days (Wolfe et al. 1980).
 
Half-life in air, days :
3.1  3.1d - 7.4hr,
0.3  scientific judgement based upon estimated photooxidation halflife in air
  Howard 1991
 
Half-life in soil, days :
180  > 6 months, Shea et al. 1982
  --
23  23d - 2d,
scientific judgement based upon unacclimated aerobic soil grad sample data
  Howard 1991
 
Half-life in water, days :
14  14d - 1d,
in surface water: scientific judgement based upon unacclimated aerobic river die-away test and freshwater/sediment grab sample data,
23  23d - 2d,
in ground water: scientific judgement based upon estimated unacclimated aqueous aerobic and anaerobic biodegradation half-lives
  Howard 1991
 
Aerobic degradation in soil :
Aerobic degradation in freshwater hydrosoil: 98 % alter 5 days
incubation (Verschueren 1983).
 
Aerobic degradation in water :
Aerobic half-life:
23d - 1d, scientific judgement based upon unacclimated aerobic 
river die-away test and soil grab sample data (Howard 1991).
 
Anaerobic degradation in water :
Anaerobic half-life:
23d - 2d, scientific judgement based upon unacclimated 
anaerobic grab sample data for soil and sediment (Howard 1991).
 
Ready biodegradability :
Confirmed to be biodegradable (Anon. 1987).
 
Other information of degradation :
Degradation of di-butyl-phthalate:
*-------------------------------------------------------------*
ENVIRONMENT      INIT.CONC   REDOX-    TEMP   DEGRADATION   REF
                    mg/l     COND.      °C    %/day  t1/2
*-------------------------------------------------------------*
water                 5     aerobic     25    100/7          a
water                10     aerobic     25    100/7          a
freshwater sediment   1     aerobic     22      5/1          b
freshwater sediment   1     aerobic     22     95/7          b
freshwater sediment   1     aerobic     22     97/30         b
freshwater sediment   1     anaerobic   22      0/1          b
freshwater sediment   1     anaerobic   22     47/7          b
freshwater sediment   1     anaerobic   22     98/30         b
sludge              100     aerobic     30    >90/20         c
soil                0.00045 aerobic     20      0/14         d
soil (adapted)      0.00045 aerobic     20     75/14         d
soil                500     aerobic     30    100/15         e
soil                500     anaerobic   30     60/30         e
soil               1000     aerobic      4      2/53         f
soil               1000     aerobic     23     32/53         f
soil               1000     aerobic     23     88/200        f
soil               1000     aerobic     30     78/53         f
soil               1000     anaerobic   23     69/53         f
soil               1000     anaerobic   23     98/200        f
soil                  1.4   aerobic     25    100/1          g
soil (sterile)        1.8   aerobic     25     70/5          g
soil                  1.4   aerobic     25    100/2          g
soil (sterile)        1.1   aerobic     25     72/5          g
soil                  5.1   aerobic     10        -   5.6    h
*-------------------------------------------------------------*
a) Tabak et al. 1981               e) Shanker et al. 1985
b) Johnson & Lulves 1975           f) Inman et al. 1984
c) Engelhardt et al. 1977          g) Russell et al. 1985
d) Hutchins & Ward 1984            h) Lökke 1984
(Anon 1987b).

Easily biodegradable both in aerobic and anaerobic ways (Kaare
Jensen et al. 1987).

Easily degradable (Anon 1989).

In sediment and soil relatively slow degradation (Giam et al
1984).

Degradation products of special interest: monobutyl phthalate,
assumed toxic metabolite in Artemia (Hudson et al. 1981).

DBP is significantly biodegraded in biodegradation tests
utilizing sewage and activated sludge inoculum. 
In a shake
flask biodegradation test after 28 days 68 to >99% of the DBP
had disappeared and  80.6 to >99% was converted to CO2. 
The lag
period averaged 4.5 days (Sugatt et al. 1984) (Howard 1989).

In an aerobic pondwater-sediment mixture 97% degradation was
noted in 5 days. 
The intermediate products of degradation were
the mono-n-butyl ester and phthalic acid. 
Biodegradation under
anaerobic conditions was slower with 41% and 98% degradation
occurring after 7 and 30 days, respectively, in a
sediment-pond water mixture (Johnson & Lulves 1975).

DBP is completely mineralized in digested sludge in 2 weeks
under anaerobic conditions and 28% was lost after 7 days ina
composting mixture (Shelton et al. 1984) (Snell Group 1982).

There is ample evidence that DBP is ready biodegradable under 
aerobic conditions. 
Also a BOD5:COD ratio of 0.63 obtained with 
a non-adapted inoculum indicates that DBP may be regarded as 
readily biodegradable. 
It is also demostrated that DBP is 
readily biodegradable in a modified Sturm test (EU RA Report 
2003).
 
Other information of metabolism :
Food chain contamination potential: ester is taken up rapidly
and magnified in crustacea, but clears after 10 days. 
Negative
(Sax 1986).
 
Bioconcentration factor, fishes :
12  24hr, Cyprinodon
  Wofford et al. 1981
 
Other information of bioaccumulation :
DBP is rabidly metabolized in fish within 4 hr, 75% of the residue 
from a channel catfish was inthe form of monobutyl phthalate 
(Johnson et al. 1977).

The log BCF in American oyster, Brown shrimp and Sheepshead minnow 
were 1.50, 1.22 and 1.07, respectively 
(Wofford et al.1981).

Bioconcentration factor (crustaceans):
5000, Palaemonetes kadiakensis (Verschueren 1983).
140, 10d, Gammarus pulex (Thuren & Woin 1988).
1400, 14d, Gammarus pseudolimnaeus, total
(Mayer & Sanders 1973).
5000, 7d, Daphnia
6500, 7d, Gammarus pseudolimnaeus
(Sanders et al. 1973).
 
Bioconcentration factor (other organisms):
6600, 7d, Chironomus (Sanders et al. 1973).

The high Kow of DBP indicates that the substance has a 
potential for bioaccumulation. However the actual degree 
of bioaccumulation in vivo will be determined by the 
metabolisation and the elimination rate of the substance (EU RA Report 2003).
 
LD50 values to mammals in oral exposure, mg/kg :
8000  orl-rat, Lewis & Sweet 1984
  --
1000  orl-rbt, Sax 1986
12000  orl-rat
5.282  orl-mus
 
LD50 values to mammals in non-oral exposure , mg/kg :
3050  ipr-rat, Sax 1986
3570  ipr-mus
720  ivn-mus
 
LC50 values to mammals in inhalation exposure, mg/m3 :
7.9  ihl-rat, Lewis & Sweet 1984
  --
2.1  ihl-mus, Sax 1986
9620  ihl-mam
 
TDLo values to mammals in oral exposure, mg/kg :
8.4  orl-rat, 7d male, teratogenic effect
2520  orl-rat, 1-21d preg, teratogenic eff.
12600  orl-rat, 1-21d preg, teratogenic eff.
1440  orl-mus, 1-18d preg, teratogenic eff.
12000  orl-mus, 1-18d preg, teratogenic eff.
38000  orl-mus, 1-18d preg, teratogenic eff.
16800  orl-mus, 7d male, teratogenic effect
14000  orl-gpg, 7d male, teratogenic effect
  Sax 1986
  --
140  orl-hmn
  Sax 1986
 
TDLo values to mammals in non-oral exposure , mg/kg :
1017  ipr-rat, 5-15d preg, teratogenic effect
305  ipr-rat, 5-15d preg, teratogenic effect
6000  ipr-rat, 3-9d preg, teratogenic effect
  Sax 1986
 
Effects on physiology of mammals :
Induces many biochemical effects, e.g. increases liver
cytochrome P-450, reduces serum albumine, changes active K-ion
transportation via membranes (Giam et al. 1984).
 
Health effects :
Man, oral, lowest dose which affects the central nervous
system: 140 mg/kg (Sax 1986).

Direct contact; low, eye, skin (Sax 1986).
 
Mutagenicity :
Negative in Drosophila-test. 
No x-chromosome mutations noted in
male fluit flies fed sublethal doses (Sax 1986).

cyt, ham, fbr, 30 mg/l, 24 hr (Sax 1986).
 
Teratogenicity :
Positive. 
Teratogenic effects demonstrated in rats (Sax 1986).
 
Effects on plants :
Plant (corn, Zea mays) heights and shoot wts. were not
significantly reduced at 200 ppmw; but at 2000 ppmw DBP, plant
height was reduced by 17 % and plant shoot wt. by 25 %. 
The low
levels (1.24 ppm) of DBP found in plants grown in soil
containing 2000 ppmw (Shea et al. 1982).

DP affected soybean germination at 200 ppm (dry soil basis)
(Overcash et al. 1982).

Induces chlorosis in green leafs (Løkke & Rasmussen 1983).
 
Effects on wastewater treatment :
May flog filters and exchange beds (Sax 1986).
 
EC50 values to microorganism, mg/l :
10.9  Microtox, Tarkpea et al. 1986
 
LC50 values to algae, mg/l :
0.02  0.02 - 0.6, srv,act, 96 hr, Gymnodium
0.6  breve, Wilson et al. 1978
 
EC50 values to algae, mg/l :
> 3, Chlorella, Melin & Agneus 1983
  --
0.75  96hr, Selenastrum, Cox & Moran 1984
  --
0.5  0.5 - 0.7, 14 - 22 permillage
0.7  Skeletonema
0.7  > 0.7, 27 permillage, Skeletonema
  Medlin 1980
  --
0.1  96hr, Gymnodinium, grw
  Wilson et al. 1978
  --
1.2  72 hr, Scenedesmus subspicatus
3.5  48 hr, biomass, Scenedesmus subsbicatus
48 hr, growth rate, Scenedesmus subspicatus
0.0034  0.0034 - 0.2 mg/l, 96 hr, Gymnodium breve
0.2  EU RA Report 2003
 
NOEC values to algae, mg/l :
2.8  7 d, Selenastrum capricornutum
0.8  10 d, Selenastrum capricornutum
0.2  8 d, Dunaliella parva
4 d, Thalassiosira pseudomona
  EU RA Report 2003
 
LC50 values to crustaceans, mg/l :
0.1  0.1 - 1.0, 17d, Palaemonetes pugio,
larvae
10  10 - 50, 24hr, Palaemonetes pugio
50  Laughlin et al. 1978
  --
1.7  96hr, Nitocra, Linden et al. 1979
  --
2.1  96hr, Gammarus pseudolimnaeus
  Mayer & Sanders 1973
  --
10  > 10, 96hr, crayfish
2.1  96hr, scud
  Sax 1986
  --
0.8  96 hr, Mysidopsis bahia, EU RA Report 2003
 
EC50 values to crustaceans, mg/l :
3.4  48hr, Daphnia magna
  Cox & Moran 1984
  --
3.4  48 hr, Daphnia magna
5.2  48 hr, Daphnia magna
0.76  48 hr, Chironomus plumosus
5.8  96 hr, Paratanytarsus parthenogenetica
1.05  21 d, Daphnia magna
0.54  7 d, Dugesia japonica
  EU RA Report 2003
 
NOEC values to crustaceans, mg/l :
21 d, Daphnia magna
0.56  16 d, Daphnia magna
0.1  10 d, Gammarus pulex
  EU RA Report 2003
 
LC50 values to fishes, mg/l :
1.2  96hr, Lepomis macrochirus,
  Buccafusco et al. 1981
  --
96hr, static, Pimephales
0.92  96hr, dynamic, Pimephales
1.6  96hr, dynamic, Salmo gairdneri
0.85  96hr, static, Lepomis
  Cox & Moran 1984
  --
4.3  48hr, Orizias latipes
  Yoshioka et al. 1986
  --
1.3  96hr, Pimephales promelas
0.73  96hr, Lepomis macrochirus
2.91  96hr, Ictalurus punctatus
6.47  96hr, Salmo gairdneri
  Sax 1986
  --
0.85  96 hr, Pimephales promelas
1.1  96 hr, Pimephales promelas, Geiger et al. 1985
  --
2.2  96 hr, Brachydanio rerio
0.9  96 hr, flow through, Pimephales promelas
96 hr, flow through, Pimephales promelas
0.46  96 hr, flow through, Ictalurus punctatus
0.9  96 hr, static, Lepomis macrochirus
0.35  96 hr, flow through, Perca flavescens
7.3  96 hr, static, Leuciscus idus
  EU RA Report 2003
 
EC50 values to fishes, mg/l :
0.85  96 hr, mbt, Pimephales promelas
1.1  96 hr, mbt, Pimephales promelas, Geiger et al.1985
 
NOEC values to fishes, mg/l :
0.56  0.56 - 1.0, Pimephales, embryo-larvae
Cox & Moran 1984
 
Other information of water organisms :
EC50, 24 hr, 2.2 mg/l, rpd, Tetrahymena pyriformis (Yoshioka et
al. 1985).

EC50, 96 hr, 5.8 mg/l, Chironomus sp. 
(Cox & Moran 1984).

Corophium sp., colonisation, 0.34 mg/l (Tagatz et al. 1983).

Daphnia, reproduction, reversible effect (Springborn 1984).

Daphnia, reproduction (McCarthy & Whitmore 1985).
 
Other effects on aquatic ecosystems :
Microcosmos, 14 d, effective concentration, 3.7 mg/l (Tagatz et
al. 1983).
 
Other information :
Persistency: Certain bacterial strains will degrade n-butyl
phthalate but only when the initial concentrations are low. -

Degradation will take place in freshwater hydrosoil also
through the enzymatic action of microorganisms. 
Anaerobic
conditions will slow biodegradation (Sax 1986).

Air pollution: There will be no appreciable vapor. 
At high
temperatures, there will be carbon dioxide (Sax 1986).

References
2357Anon 1988. Concentrations of industrial organic chemicals measured in the environment: The influence of physico - chemical properties, tonnage and use pattern. Technical report no 29. European chemical industry ecology & toxicology centre, ECETOC. pp. 105.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
2333Anon. 1987b. Nedbrydelighed af miljøfremmede organiske stoffer. Utredningsrapport U1. Lossepladsprojektet.
2285Anon. 1989. Miljöfarliga ämnen - exempellista och vetenskaplig dokumentation. 303 p. Stockholm. Rapport från kemikalieinspektionen (KEMI) 10.
2661Atlas, E., Foster, R. and Giam, C. S. 1982. Environ. Sci. Technol. 16: 283 - 286.
2588Benckiser, G. & Ottow, J.C.G. 1982. Metabolism of the plasticizer di-n-butyl phthalate by Pseudomonas pseudoalacaligenes under anaerobic conditions with nitrate as the only electron acceptor. Appl. Environ. Microbiol. 44: 576.
3319Bouwer, E. J. et al. 1981. Water Res. 15: 151 - 159.
207Buccafusco, R.J., Ells, S.J. & LeBlanc, G.A. 1981. Acute toxicity of priority pollutants to bluegill (Lepomis macrochirus). Bull. Environ. Contam. Toxicol. 26: 446 - 452.
2609Callahan, M. A., Slimak, M. W., Gabel N. W:, May, I. P., Fowler, C. F., Freed, J. R.,Jennings, P., Durfee, R. L., Whitmore, F. C., Maestri, B., Mabey, M. R., Holt, B. R. and Gould, C. 1979. Waterrelated environmental fate of 129 priority pollutants. Vol II. Halogenated aliphatic hydrocarbons, halogenated ethers, monocyclic aromatics, phthalate esters, polycyclic aromatic hydrocarbons, nitrosamines and miscellenious compounds. EPA - 440/4 - 79 -029b.
2595Cox, G.V. & Moran, E.J. 1984. Summary report - Environmental studies - Phase I, Generation of environmental fate and effects data base on 14 phthalate esters. Chemical Manufacturers Association, Washington, D.C.
2587Eaton, R.W. & Ribbons, D.W. 1982. Utilisation of phthalate esters by Micrococci. Arch. Microbiol. 132: 185.
2407Engelhardt, G., Tillmanns, G., Wallnöfer, P.R. & Hutziger, D. 1977. Biodegradation of di-iso-butyl phthalate and related dialkyl phthalates by Penicillium. Chemosphere 6: 347 - 354.
3354EU RA Report 2003. Existing Substances: dibutyl phthalate. European Union Risk Assessment Report (Vol 29). Institute for Health and Consumer Protection. European Chemicals Bureau. European Communities.
3296Geiger, D. L. et al. 1985. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas) Vol. 2. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, Winconsin, U.S.A. 326.
3133GEMS; 1986 -. Graphical Exposure Modeling System. FAP. Fate of Atmos Pollut.
3320Giam, C. S. et al. 1980. Atmos. Environ. 14: 65 - 69.
2584Giam, C.S., Atlas, E., Powers, M.A. & Leonard, J.E. 1984. Phthalatic acid esters. In: Hutzinger, O. (Ed.) Handbook of Environmental Chemistry, Springer-Verlag, Vol.3, Part C, p.67.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
3047Howard, P. H. 1989. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. I: Large Production and Priority Pollutants. Lewis Publishers, Inc. Chelsea. pp 574.
3220Howard, P. H. et al. 1985. Environ. Toxicol. Chem. 4: 653 - 661.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
2589Hudson, R.A., Austerberry, C.F. & Bagshaw, J.C. 1981. Phthalate ester hydrolases and phthalate ester toxicity in synchronously developing larvae of the brine shrimps (Artemia). Life Sci. 29(18): 1865 - 1872.
2341Hutchins, S.R. & Ward, C.H. 1984. A predictive laboratory study of trace organic contamination of groundwater: preliminary results. J. Hydrol. 67: 223 - 233.
2411Inman, J.C., Strachaw, S.D., Sommers, L.E. & Nelson, D.W. 1984. The decomposition of phthalate esters in soil. J. Environ. Sci. Health., Part B., Pestic. Food. Contam. Agric. Wastes 19: 245 - 257.
3321Johnson, B. T. et al. 1977. In fate of pollutants in the air and water environment. Suffet, S. H. ed. John Wiley & Sons NY p. 422.
1879Johnson, B.T. & Lulves, W. 1975. Biodegradation of di-n-butyl phthalate and di-2-ethyl-hexyl phthalate in freshwater hydrosoil. J. Fish. Res. Bd. Can. 32: 333 - 339.
1879Johnson, B.T. & Lulves, W. 1975. Biodegradation of di-n-butyl phthalate and di-2-ethyl-hexyl phthalate in freshwater hydrosoil. J. Fish. Res. Bd. Can. 32: 333 - 339.
2585Kaare Jensen, S., Nielsen, M., Riber, H. & Skaarup, J. 1987. Nedbrydelighed af miljøfremmede organiske stoffer. Utredningsrapport U1, Lossepladsprojektet, COWI consult, København.
785Laughlin, R.B.,Jr., Neff, J.M., Hrung, Y.C., Goodwin, T.C. & Gian, C.S. 1978. The effects of three phthalate esters on the larval development of the grass shrimp palaemonetes pugio (Holthuis). Water, Air and Soil Pollut. 9: 323 - 336.
1589Lewis, R.J. & Sweet, D.V. 1984. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 83-107-4.
831Linden, E., Bengtsson, B-E., Svanberg, O. & Sundström, G. 1979. The acute toxicity of 78 chemicals and pesticide formulations against two brackish water organisms, the bleak (Alburnus alburnus) and the harpacticoid Nitocra spinipes. Chemosphere 11/12: 843 - 851.
2960Lyman, W. J. et al. 1982. Handbook of Chemical Property Estimation Methods. Environmental behavior of organic compounds. McGraw-Hill New York.
2601Løkke, H. & Rasmussen, L. 1983. Phytotoxicological effects of di(2-ethylhexyl)phthalate and di(n-butyl)phthalate on higher plants in laboratory and field experiments. Environ. Poll. Ser. A 32(3): 179 - 199.
2351Løkke, H. 1984. Organisk-kemiske stoffers skæbne og effekt i planter og jord. Licentiat afhandling under det naturvidenskabelige fakultet ved Københavns universitet.
3322Matsuda, K & Schnitzer, B. 1971. Bull. Environ. Contam. Toxicol. 6: 200 - 204.
2591Mayers, F.L. & Sanders, H.D. 1973. Toxicology of phthalic acid esters in aquatic organisms. Environ. Health Perspect. 3: 153 - 157.
2600McCarthy, J.F. & Whitmore, D.K. 1985. Chronic toxicity of di-n-butyl- and di-n-octyl-phthalate to Daphnia magna and the fathead minnow. Environ. Toxicol. Chem. 4(2): 167 - 179.
2596Medlin, L.K. 1980. Effects of dibutylphthalate and salinity on the growth of the diatom Skeletonema costatum. Bull. Environ. Contam. Toxicol. 25(1): 75 - 78.
2594Melin, C. & Egneus, H. 1983. Effect of dibutylphthalate on growth and photosynthesis in algae and on isolated organelles from higher plants. Physiol. Plant. 59(3): 461 - 466.
2511Nordic 1988. Environmental hazard classification of chemicals. Status report from the Joint Nordic Project, December 19, 1988, Kemikalieinspektionen, Solna.
44Overcash, M.R., Weber, J.B. & Miles, M.L. 1982. Behaviour of organic priority pollutants in the terrestrial system; di-n-butyl phthalate ester, toluene, and 2,4-dinitrophenol. Rep. Water Resour. Res. Inst. Univ. N.C., Vol. 171, 103 pp.
2593Ray, L.E., Murray, H.E. & Giam, C.S. 1983. Organic pollutants in marine samples from Portland, Maine. Chemosphere 12(7/8): 1031 - 1038.
2412Russell, D.J., McDuffie, M. & Fineberg, S. 1985. The effect of biodegradation on the determination of some chemodynamic properties of phthalate esters. J. Environ. Sci. Health., Part A 20: 927 -942.
1227Sanders, H.O., Mayer, F.L. Jr. & Walsh, D.F. 1973. Toxicity residue dynamics and reproductive effects phthalate esters in aquatic invertebrates. Environ. Res. 6: 84.
2147Sax, I. 1986. Hazardous chemicals information annual No. 1. Van Nostrand Reinhold Information Services, New York. 766 s.
2409Shanker, R., Ramakrishna, C. & Seth, P.K. 1985. Degradation of some phthalic acid esters in soil. Environ. Pollut. Ser. A. Ecol. Biol. 39: 1 - 8.
2586Shea, P.J., Weber, J.B. & Overcash, M.R. 1982. Uptake and phytotoxicity of di-n-butyl phthalate in corn (Zea mays). Bull. Environ. Contam. Toxicol. 29(2): 153 - 158.
3222Shelton, D. R. et al. 1984. Env. Sci Tech. 18: 93 - 97.
3323Snell Environmental Group Inc. 1982. Rate of biodegradation of toxic organic compounds while in contact with organics which are actively composting p. 100 NSF/CEE 82024.
2599Springborn Bionomics, Inc. 1984. Chronic toxicity of fourteen phthalate esters to Daphnia magna. Chemical Manufacturers Association, Washington, D.C.
3324Sugatt, R. H. et al. 1984. Appl. Environ. Microbiol. 47: 601 - 606.
3325Sullivan, K. F. et al. 1981. Anal. Chem. 53: 1718 - 1719.
2335Tabak, H.H., Quave, S.A., Mashni, C.I. & Barth, E.F. 1981. Biodegradability studies with organic priority pollutant compounds. Journal WPCF. 53: 1503 - 1518.
2598Tagatz, M.E., Deans, D.H., Moore, J.C. & Plaia, G.R. 1983. Alterations in composition of field- and laboratory-developed estuarine benthic communities exposed to di-n-butyl phthalate. Aquat. Toxicol. 3(3): 239 - 248.
2418Tarkpea, M. et al. 1985. Comparison of the Microtox test with the 96-Hr LC50 for the Harpacticoid Nitocra spinipes. Ecotoxicol. Environ. Safety 11: 127.
2590Thuren, A. & Woin, P. 1988. Effects of phthalate esters on the locomotor activity of the freshwater amphipod Gammarus pulex. In: Thurén, A., Phthalate Esters in the Environment, Dissert., Lund University.
3326Tomson, M. B. et al. 1981. Water Res. 15: 1109 - 1116.
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.
2413Walker, J. D. 1987. Effects of chemicals on microorganisms. Journal WPCF 59 (6): 614 - 625.
1552Wilson, W.B., Glam, C.S., Goodwin, T.E., Aldrich, A., Carpenter, V. & Hrung, Y.C. 1978. The toxicity of phthalates to the marine dinoflagellate Gymnodinium breve. Bull. Environm. Contam. Toxicol. 20: 149 - 154.
2592Wofford, H.W., Wilsey, C.D., Neff, G.S., Giam, C.S. & Neff, J.M. 1981. Bioaccumulation and metabolism of phthalic esters by oysters, brown shrimp and sheepshead minnows. Ecotoxicol. Environ. Safety 5: 202.
2592Wofford, H.W., Wilsey, C.D., Neff, G.S., Giam, C.S. & Neff, J.M. 1981. Bioaccumulation and metabolism of phthalic esters by oysters, brown shrimp and sheepshead minnows. Ecotoxicol. Environ. Safety 5: 202.
3327Wolfe, N. L. et al. 1980. Chemosphere 9: 393 - 402.
2597Yoshioka, Y., Ose, Y. & Sato, T. 1986b. Correlation of five test methods to assess chemical toxicity and relation to physical properties. Ecotoxicol. Environ. Safety 12: 15 - 21.
1766Yoshioka, Y., Ose, Y. & Sato,T. 1985. Testing the toxicity of chemicals with Tetrahymena pyriformis. Sci. Total. Environ. 43:149.

 
 
© Copyright Environmental Administration