www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


25.4.2024

Data bank of environmental properties of chemicals


Chemical
Diazinon
CAS-number :
333-41-5
 
Synonyms :
Diatsinoni
O,O-diethyl-O-(2-isopropyl-4-methyl-6-pyrimidinyl)-phosphorothioate
O,O-Diethyl-O-(2-isopropyl-4-methyl-6-pyrimidinyl)thiophosphoric acid
O,O-diethyl-O-(2-isopropyl-6-methyl-pyrimidin-4-yl-phosphorothioate)
O,O-diethyl-O-(2-propyl-6-methylpyrimidin-4-yl)-thiophosphate
Phosphorothioic acid, O,O-diethyl O-[6-methyl-2- (1- methylethyl)-4-pyrimidinyl] ester
 
Sumformula of the chemical :
C12H21N2O3PS
EINECS-number :
2063738
 
Known impurities :
Sulfotepp: 1.4 - 6.9 ppm as impurity (Meier et al. 1979).
 
Uses :
Active ingredient in insecticides.
 
State and appearance :
A colourless oil (decomposes above 120 °C)
 
Molecular weight :
304.38
 
Spesicif gravity (water=1) :
1.116 
 
Vapor pressure, mmHg :
1.29  at 20°C, KEMI 1991
 
Water solubility, mg/l :
40  20°C
 
Boiling point, °C :
83  83-84, MITI 1992
 
pKa :
2.39  KEMI 1991
 
Log octanol/water coefficient, log Pow :
3.95  KEMI 1991
 
Log soil sorption coefficient, log Kom :
2.12  Sabljic 1987
 
Mobility :
The mobility of diazinon is medium high. 
It is bound more
tightly to soil the higher is contents of humus in soil, the
dryer soil is and the lower temperature is in soil. 
Ka: 2 - 325 
Koc: 255 - 496 (KEMI 1991).
 
Other physicochemical properties :
Decomposes above 120 °C.
 
Hydrolysis in water :
Diazinon is transformed nearest by hydrolysis. 
The
transformation is relative slow. 
It depends on acidity in soil
or water; the sourer soil the quicklier transformation (KEMI 
1991).
 
Hydrolysis in acid :
Acid hydrolysis (pH ~ 2) reduced diazinon concentration
by >99.9%; hydrolysis products are
6-isopropyl-4-methyl-2-pyrimidinol and thiophosphate (Meier et 
al. 1976).
 
Half-life in soil, days :
32  Li et al. 1990
 
Total degradation in soil :
75 - 100 % disappearance from soils: 12 weeks (Verschueren
1983).

Persistence in soil at 10 ppm initial concentration:
                                   wk incubation to
                              50% remaining   5% remaining
sterile sandy loam                 12.5             -
sterile organic soil                6.5             -
non-sterile sandy loam             <1               1
non-sterile organic soil            2               7
(Miles et al. 1979)
 
Total degradation in water :
Biodegradation:
0% by BOD
period: 14d
substance: 100 mg/l
sludge: 30 mg/l
(MITI 1992)
 
Other information of degradation :
In soil diazinon is degraded by microorganisms under acidic
conditions. 
It is happening more quicklier if the soil is misty
and it has low pH and high temperature. 
In the laboratory
experiment half of diazinon was mineralized after five months
at 25°C. 
Degradation of diazinon by microbies is happening also
in water. 
The half-life in water is about 3 days in the
laboratory experiment (KEMI 1991).

In the degradation (clay soil) pyrimidinol and
hydroxypyrimidinol are the degradation products. 
Pyrimidinol
degradates in acidic conditions to carbon dioxide.

Diazinon transforms even to diazoxon and hydroxydiazinon.

Diaoxon is more toxicity than diazinon (KEMI 1991).
 
Bioconcentration factor, fishes :
96.7  96.7 - 210, Pseudorasbora parva,
210  Verschueren 1983
  --
10  Fundulus heteroclitus, Verschueren 1983
  --
7.0 - 46.9, 6w, Cyprinus carpio, conc 0.04 mg/l,
46.9 
10.7  10.7 - 36.6, 6w, Cyprinus carpio, conc 0.004 mg/l,
36.6  MITI 1992
 
Other information of bioaccumulation :
Bioconcentration ratios of diazinon by various species of
freshwater organisms - exposed to 10 ppb for 7 days:
                               bioconcentration ratio
                                     average
Pseudorasbora parva                   152
Cyprinus auratus                       36.6
Cyprinus carpio                        65.1
Lebistes reticulatus                   17.5
Procambarus clarkii                     4.9
Indoplanorbis exustus                  17.0
Cipangopoludina malleata                5.9

Pseudorasbora parva: bioconcetration ratio increased with body
weight (exposure at 10 ppb for 7 days) from 50 to 175 for body
weights between 2 and 6 g (Kanazawa 1978).

Effect of the diazinon concentration in test water on the
bioconcentration ratios by Pseudorasbora parva:
diazinon in  days after bioconc.  days after return  diazinon in
water, ppb   exposure   ratio     to clean water     fish, ppb
   11.5         7         118.2         8                 5
   52.5         7         206.0         7                26
(Kanazawa 1978)

Diazinon is moderately bioaccumulated. log Kow: 3.95; BCF in
fish 18 - 213 (KEMI 1991).

Confirmed to be non-accumulative or low accumulative (Anon 1987).

Bioconcentration factor (other organisms):
4.9 - 152,water organisms (Verschueren 1983).
 
LD50 values to mammals in oral exposure, mg/kg :
300  300 - 400, oral-rat, techn.grade
400  Anon 1976
  --
432  423 - 1031, orl-rat
1031  KEMI 1991
 
LD50 values to mammals in non-oral exposure , mg/kg :
455  skn-rat, Lewis & Sweet 1984
400  skn-rbt, - " -
  --
900  skn-rat-male, Martin 1968
455  skn-rat-female, Martin 1968
  --
2150  >2150, skn-rat, KEMI 1991
 
LC50 values to mammals in inhalation exposure, mg/m3 :
3500  ihl-rat, KEMI 1991
 
LDLo values to mammals in oral exposure, mg/kg :
30  orl-rbt, Lewis & Sweet 1984
 
LD50 values to birds in oral exposure, mg/kg :
orl-bwd, Lewis & Sweet 1984
3.5  orl-dck, - " -
  --
2.00 - 3.16, orl-Agelaius phoeniceus,
3.16 
110  110 - 316, orl-Sturnus vulgaris
316 
4.22  orl-Coturnix coturnix
7.5  orl-Passer domesticus
7.5  orl-Quiscalus quiscula
3.16  orl-Columba livia
  Schafer et al. 1983
  --
1 - 10 mg/kg, quail, sparrow, duck
10  KEMI 1991
 
Subacute LC50 values to birds in feeding ex posure, mg/kg :
32  5d, 32 - 38 mg/kg, feed, Anas
38  platyrhynchos, KEMI 1991
 
Effects on reptiles :
Diazinon (12 mg/kg soil) hinders the growth of young earthworms
(Allolobophora calignosa) (KEMI 1991).
 
Effects on bees :
Highly toxic to bees (Martin 1968).

LD50, 48hr, 0.37 ug/bee (KEMI 1991).
 
Effects on anthropods :
LC50, 0.025 mg/l, 96hr, Pteronarcys californica
(Sanders & Cope 1968).

LC50, 0.0046 mg/l, 30d, Pteronarcys dorsata
NOEC, 0.0039 mg/l, 30d, Pteronarcys dorsata
(Verschueren 1983).

LC50, 0.0017 mg/l, 96hr, Acroneuria lycorias
LC50, 0.00125 mg/l, 30d, Acroneuria lycorias
NOEC, 0.00083 mg/l, 30d, Acroneuria lycorias
LC50, 0.0022 mg/l, 30d, Ophiogomphus rubinsulensis
NOEC, 0.00129 mg/l, 30d, Ophiogomphus rubinsulensis
LC50, 0.00354 mg/l, 30d, Hydropsyche bettoni
NOEC, 0.00179 mg/l, 30d, Hydropsyche bettoni
LC50, 0.00105 mg/l, 30d, Ephemerelia subvaria
NOEC, 0.00042 mg/l, 30d, Ephemerelia subvaria
LD50, 2450 ppm, rice field spider: Oedothorax insecticeps
(Ishikura 1972).

LC50, misty soil, 1.2 mg/kg soil, grasshopper
LC50, dry soil, 37.6 mg/kg soil, grasshopper
(KEMI 1991).
 
Effects on plants :
Application of diazonin at 0.42 kg a.i. 
(50 % emulsifiable
concentrate)/ha to about 30 days old tomatoes (Lycopersicon
esculentum) as foliar sprays caused a reduction in tomato
shoot dry weight (Stephenson et al. 1980).
 
EC50 values to algae, mg/l :
6.4  grw, 7d, Selenastrum capricornitum
17.3  grw, 5d, Scenedesmus subspicatus
  KEMI 1991
 
NOEC values to algae, mg/l :
0.06  7d, Selenastrum capricornitum
  KEMI 1991
 
LC50 values to crustaceans, mg/l :
0.00027  srv,act, 30 d, Gammarus pseudolimnesus,
  Verschueren 1983
0.0026  srv,act, 96 hr, Acartia tonsa,
  Khattat & Farley 1976
0.0012  srv,act, 48 hr, Daphnia magna, Dennis et
  al. 1979
2.27  srv,act, 96 hr, Saccobranchus fossilis,
  Verma et al. 1982
0.08  srv,act, Daphnia pulex, Hashimoto &
  Nishiuchi 1981
0.008  srv,act, " " , Nishiuchi &
  Hashimoto 1967
0.004  srv,act, Daphnia magna, Kenaga 1979
0.0009  srv,act, 48 hr, Daphnia pulex, Sanders &
  Cope 1966
0.0025  srv,act, 48 hr, Daphnia magna,
  Gorbach & Knauf 1971
  --
0.2  96hr, Gammarus lacustris, Sanders 1969
0.0014  48hr, Simocephalus serrulatus, Sanders &
  Cope 1966
 
EC50 values to crustaceans, mg/l :
0.0009  48hr, Daphnia pulex, Shapiro 1979
  --
0.00096  48hr, 0.00096 - 0.0011 mg/l, Daphnia
0.0011  magna, KEMI 1991
 
LOEC values to crustaceans, mg/l :
0.00032  mbt, Daphnia magna, KEMI 1991
 
NOEC values to crustaceans, mg/l :
0.0002  30d, Gammarus pseudolimneaus
0.00026  21d, Daphnia magna
  Verschueren 1983
  --
0.00056  48hr, Daphnia magna, KEMI 1991
0.00083  chronic, rpd, Daphnia magna, KEMI 1991
 
LC50 values to fishes, mg/l :
0.09  srv,act, Salmo gairdneri, Kenaga 1979
  --
0.052  srv,act, 24 hr, Lepomis macrochirus
0.38  srv,act, 24 hr, Salmo gairdneri
  Cope 1965
  --
7.8  srv,act, 96 hr, Pimephales promelas
1.6  srv,act, 96 hr, Jordanella floridae
0.77  srv,act, 96 hr, Salvelinus fontinalis
0.46  srv,act, 96 hr, Lepomis macrochirus
0.45  srv,act,96 hr, Salmo trutta m. lacustris
  Allison & Hermanutz 1977
  --
1.9  act,24 hr, Cyprinus carpio, Hashimoto et
  al. 1982
3.1  srv,act, 96 hr, Channa punctata
  Sastry & Malik 1981
  --
3.2  srv,act, 48 hr, Cyprinus carpio
5.1  srv,act, 48 hr, Carassius auratus
  Hashimoto & Nishiuchi 1981
  --
2.6  2.6 - 3.2, srv,act, 96 hr, Salmo
3.2  gairdneri
16  srv,act, 96 hr, Lepomis macrochirus
7.6  7.6 - 23.5, srv,act, 96 hr, Cyprinus
23.5  carpio, Pesticide Manual 1983
  --
3.2  srv,act, 48 hr, Cyprinus carpio
  Nishiuchi & Hashimoto 1967
  --
0.02  srv,act, Lepomis macrochirus, Kenaga
  1979
2.3  1d, Branchydanio rerio
2.12  4d, Branchydanio rerio
  Ansari et al. 1987
  --
0.45  0.45 - 1.05, 96hr, Salvelinus fontanalis
1.05  Allison & Hermanutz 1977
  --
3.7  3.7 - 10.0, 96hr, Pimephales promelas
10 
0.17  0.17 - 0.53, 96hr, Lepomis macrochirus
0.53  Dennis et al. 1979
  --
0.4  96hr, Salmo gairdneri, KEMI 1991
23  96hr, Cyprinus carpio, KEMI 1991
  --
48hr, Oryzias latipes, MITI 1992
 
LOEC values to fishes, mg/l :
0.014  grw,chr, Platichthys flesus,
  Allison & Hermanutz 1977
0.09  rpd,schr, Pimephales promelas,
  Järvinen & Tanner 1982
0.0005  rdp,schr, Cyprinodon variegatus,
  Goodman et al. 1979
0.0032  chr, Pimephales promelas, Allison &
  Hermanutz 1977
 
NOEC values to fishes, mg/l :
0.04  rpd,schr, Pimephales promelas,
  Järvinen & Tanner 1982
0.008  chr, Pimephales promelas, Allison &
  Hermanutz 1977

References
43Allison, D.T. & Hermanutz, R.O. 1977. Toxicity of diazinon to brook trout and fathead minnows, EPA-600/3-77-060, U.S. Environmental Protection Agency, Duluth, Minn.
63Anon. 1976. Pesticide Dictionary 1976. Farm Chemicals, Meister Publishing Company, 37841 Euclid Avenue, Willoughby, Ohio 44094.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
1988Ansari, B.A. et al. 1987. Diazinon toxicity: activities of acetylcholinesterase and phosphatases in the nervous tissue of zebra fish, Brachydanio rerio (Cyprinidae). Acta Hydrochim. Hydrobiol. 15: 301.
291Cope, O.B. 1965. Sport fishery investigation. In: The effect of pesticides on fish and wildlife, 51-64, U.S. Fish Wildl. Serv. Cir. 226.
333Dennis, W.H. et al., 1979. Degradation of diazinon by sodium hypochlorite. Chemistry and aquatic toxicity. Environm. Sci. & Techn. 13(5): 594 - 598.
3101KEMI 1990 - 1991. Kemikalieinspektionens ämnesblad. Faktablad för verksamma ämnen i bekämpningsmedel avsedda för jordbruk och trädgårdsnäring mm.
705Kenaga, E.E. 1979. Acute and chronic toxicity of 75 pesticides to various animal species. Down to earth 35(2): 25 - 31.
761Könemann, W.H. 1979. Quantitative structure-activity relationships for kinetics and toxicity of aquatic pollutants and their mixtures in fish. Univ. Utrecht, Netherlands.
1589Lewis, R.J. & Sweet, D.V. 1984. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 83-107-4.
2450Li, W.,Merrill, D. E. & Haith, A. 1990. Loading functions for pesticide runoff. Research Journal WPCF, 62(1): pp. 16 - 26.
897Martin, H. 1968. Pesticide manual, British crop protection council, Clacks Farm, Boreley, Ombersley, Droitwich, Worcester, U.K.
3105MITI 1992. Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Compild under the Safety Division Basic Industries Bureau Ministry of International Trade & Industry, Japan. Edited by Chemicals Inspection & Testing Institute, Japan.
1973Pilli.A., Carle, D.O., Kline. E., Pickering. Q. & Lazorchak. J. 1988. Effets of pollution on freshwater organisms. JWPCF 60(6): 994 - 1065.
2324Sabljic, A. 1987. On the prediction of soil sorption coefficients of organic pollutants from molecular structure: application of molecular topology model. Environ. Sci. Technol. 21: 358 - 366.
1226Sanders, H.O. & Cope, O.B. 1968. The relative toxicities of several pesticides to naiads of three species of stoneflies. Limnol. Oceanogr. 13(1): 112 - 117.
1225Sanders, H.O. & Cope, O.B. 1966. Toxicities of several pesticides to two species of cladocerans. Trans. Am. Fish Soc. 95: 165 - 169.
1221Sanders, H.O. 1969. Toxicity of pesticides to the Crustacean, Gammarus lacustris. Bureau of Sport Fisheries and Wildlife technical paper 25, Government Printing Office, Washington, D.C.
1743Schafer , E.W.Jr., Bowles, W.A.Jr., Hurlbut, J. 1983. The acute oral toxicity, repellency and hazard potential of 993 chemicals to one or more species of wild and domestic birds. Arch. Environ. Contam. Toxicol. 12: 355 - 382.
1744Stephenson, G.R., Phatak, S.C., Makowski, R.I. & Bouw, W.J. 1980 Phytotoxic interactions involving metribuzin and other pesticides in tomatoes. Can. J. Plant Sci. 60(1): 167 - 175.
1431Toyama, T. & Takazawa, Y. 1971. Herbicide, MO. Noyaku Seisan Gijutsu, (23): 1.
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.

 
 
© Copyright Environmental Administration