www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


26.4.2024

Data bank of environmental properties of chemicals


Chemical
Trichloroethylene
CAS-number :
79-01-6
 
Synonyms :
1,1,2-trichloroethylene.
acetylenetrichloride
ethylene trichloride
TCE
trichloroethene
trikloorieteeni
Trikloorietyleeni
Trilene
 
Sumformula of the chemical :
C2HCl3
EINECS-number :
2011674
 
Purity, % :
98  > 98 %
 
Known impurities :
Amines * as stabilizers 0.001 - 0.01 %

* Combinations of
epoxides * and
esters * 0.2 - 2.0 % total (Fawell & Hunt 1988).
 
Uses :
Solvent used for degreasing metals and as a dry-cleaning agent. 
It has been used as an anaesthetic by inhalation, although this
use is now infrequent. 
Solvent in food processing.
 
Odor :
Odour threshold: 10 mg/l in water (Verschueren 1983).
 
Molecular weight :
131.38
 
Water solubility, mg/l :
1000  20 °C,1 - 1.1 g/l
1100  Anon 1986b
1100  25 °C, Anon 1986b
500  > 500, MITI 1992
 
Melting point, °C :
-73  Suntio et al. 1988
-73  MITI 1992
 
Boiling point, °C :
87 
86.9  Anon 1986b
87.2  MITI 1992
 
Log octanol/water coefficient, log Pow :
2.42  ANON 1986
2.29  2.29 - 3.30, Sabljic 1987
3.3 
2.29  Anon 1986b
2.53  Anon 1988
2.29  Schwarzenbach et al. 1983
2.42  Banerjee et al. 1980
 
Log soil sorption coefficient, log Kom :
observed, Sabljic 1987
1.7  calculated, Sabljic 1987
 
Henry's law constant, Pa x m3/mol :
1101  calc., Gossett 1987
971  exptl., Gossett 1987
1182  calc. Yaws et al. 1991
 
Volatilization :
Relative volatility (nBuAc=1) = 6.99
 
Mobility :
28.65 % (air), 71.27 % (water), 0.08 % (sediment).

Equilibrium distribution:
         mass %
air     99.67
water    0.31
solid    0.02
(Anon 1988)
 
Photochemical degradation in air :
Photooxidation half-life in air:
1.1d - 11.3d, 
based upon measured rate data for the vapor phase reaction with 
hydroxyl radicals in air (Howard 1991).
 
Hydrolysis in water :
First-order hydrolysis half-life:
10.7mo, based upon a first order rate constant (k=0.065 mo-1)
at 25 °C (Howard 1991).
 
Half-life in air, days :
1.1  1.1d - 11.3d,
11.3  based upon photooxidation half-life in air,
  Howard 1991
 
Half-life in soil, days :
180  6mo - 1yr,
360  scientific judgement based upon estimated aqueous
  aerobic biodegradation half-life,
  Howard 1991
 
Half-life in water, days :
180  6mo - 1yr,
360  in surface water, scientific judgement based upon
  estimated aqueous aerobic biodegradation half-life,
321  10.7mo - 4.5yr,
1653  in ground water, scientific judgement based upon
  hydrolysis half-life and anaerobic sediment grab
  sample data,
  Howard 1991
 
Aerobic degradation in water :
Aerobic half-life:
6mo - 1yr,
scientific judgement based upon acclimated aerobic soil 
screening test data (Howard 1991).
 
Anaerobic degradation in water :
Anaerobic half-life:
98d - 4.5yr,
scientific judgement based upon anaeobic sediment grab sample 
data (Howard 1991).
 
Total degradation in water :
Biodegradation:
2.4% by BOD
period: 14d
substance: 100 mg/l
sludge: 30 mg/l
(MITI 1992)
 
Other information of degradation :
Degradation of trichloroethylene:
*--------------------------------------------------------------*
ENVIRONMENT  INIT.CONC   REDOX-      TEMP   DEGRADATION   REF.
             mg/l        COND.       °C     %/day    t1/2
*--------------------------------------------------------------*
soil            5        anaerobic   25      -       33-90   a
aquifer material 0.085   anaerobic   20       <3/7     -     b
water (mixed cult.) 0.012 methanogen 35       25/112  270    c
water           0.034    methanogen  35       12/112  620    c
water           0.127    methanogen  35       46/112  127    c
water           0.011    aerobic     20        0/175 >175    c
water           0.031    aerobic     20        0/175 >175    c
water           0.081    aerobic     20        0/175 >175    c
water           0.178    methanogen  35       40/57    78    d
water (deion.)  1.0      aerobic     25         -     320    e
water           0.08     aerobic + methane 20 81/0.3   <2    f
water           0.65     aerobic     20       69/4      2.4  f
soil            1.0      aerobic + natural gas  -       0.03 g
water (adapted) 1.436    aerobic      -       97/11     -    h
water          50        aerobic      -       44/14     -    h
water          36        aerobic/anaerobic    56/16     -    h
water           5        aerobic     25       64/7      -    i
water          10        aerobic     25       38/7      -    i
water (adapted) 5        aerobic     25       86/7      -    i
water          10        aerobic     25       84/7      -    i
soil            0.82     aerobic + propane      -      5-9   j
soil            0.9      aerobic     20       14/2      -    k
soil            0.18     aerobic     20        0/2      -    k
aquifer material 0.6 - 0.8 aerobic   17       <2/7       <1.2l
soil            0.15     aerobic + methane    95/7      -    m
*--------------------------------------------------------------*
a) Barrio-Lage et al. 1987 h) Kästner 1986 (1000000000 org./ml)
b) Wilson et al. 1983b     i) Tabak et al. 1981
c) Bouwer et al. 1981      j) Wilson & White 1986
d) Bouwer & McCarty 1983a  k) Wilson et al. 1981
e) Dilling et al. 1975     l) Wilson et al. 1983
f) Fogel et al. 1986       m) Wilson & Wilson 1985
g) Anon. 1987b             (Anon. 1987b).
 
Metabolism in mammals :
Trichloroethylene is absorbed into the body through the lungs,
gastrointestinal tract and the skin. 
Following oral
administration of 5, 10 and 25 mg/kg to male rats,
trichloroethylene appeared rapidly in the blood, with
concentrations peaking after 6 - 10 min. 
This compound is
easily absorbed across the gastrointestinal tract in man, and
many cases of acute poisoning following oral ingestion have
been reported (Fawell & Hunt 1988).

Trichloroethylene is absorbed through the skin in man, although
the significance of this route of exposure for dilute aqueous
solutions is still unclear (Fawell & Hunt 1988).

Trichloroethylene is distributed primarily to the adipose
tissue, due to its high fat solubility (Fawell & Hunt 1988).

Transplacental diffusion has been demonstrated in humans, and
trichloroethylene was detected in foetal blood (Fawell &  Hunt 
1988).

This compound is readily metabolized by rodents, primates and
man. 
In the liver, metabolic breakdown of trichloroethylene is
thought to involve transformation by mixed function oxidase
enzymes to a reactive epoxide. 
The instability of this epoxide
has been attributed to its non-symmetrical arrangement of
chlorine atoms. 
A rearrangement of the epoxide results in the
formation of chloral. 
This may be either oxidized to
trichloroacetic acid, or reduced to trichloroethanol.

Trichloroethanol products may also be conjugated to form
glucoronides. 
The identification of HAAE
(N-(hydroxyacetyl)-aminoethanol) and oxalic acid in the urine
of rats and mice after a single oral dose of radiolabelled
trichloroethylene indicates that dechlorination reactions may
also occur in the breakdown of this compound. 
However, in man
the principal metabolites following absorption of
trichloroethylene appear to be trichloroacetic acid and
trichloroethanol (Fawell & Hunt 1988).

Recent studies suggest that trichloroethylene may also be
metabolized to some extent in the kidney, to form a cysteine
conjugate. 
The production of reactive intermediated during this
process may explain the nephrotoxicity and
nephrocarcinogenicity of trichloroethylene observed in rats
(Fawell & Hunt 1988).

Trichloroethylene metabolism appears to be a dose-dependent
process in rats and man (Fawell & Hunt 1988).
 
Other information of metabolism :
Alcohol in the blood inhibits metabolism of this compound and
may cause 'Degreaser's flush'. 
Symptoms include drowsiness and
reddening of the face and upper body (Fawell & Hunt 1988).

The major route of elimination is via the lungs. 
The rest is
eliminated in the urine. 
Following metabolism of
trichloroethylene, the elimination of various metabolites in
the urine occurs at different rates. 
The slower excretion rate
of trichloroacetic acid compared to trichloroethanol may be due
to its higher affinity for proteins (Fawell & Hunt 1988).
 
Bioconcentration factor, fishes :
17  14d, Lepmis macrochirus
19  14d, Brachydanio rerio
15  8d, Brachydanio rerio
  Anon 1986b
  --
4.3  4.3 - 17.0, 6w, Cyprinus carpio, conc 0.07 mg/l,
17 
4.0 - 16.0, 6w, Cyprinus carpio, conc 0.007 mg/l,
16  MITI 1992
 
Other information of bioaccumulation :
Confirmed to be non-accumulative or low accumulative 
(Anon. 1984).
 
LD50 values to mammals in oral exposure, mg/kg :
4920  orl-rat, Torkelson & Rowe 1982
  --
2443  orl-mus, female
2402  orl-mus, male
  Tucker et al. 1982
  --
7200  orl-rat, 14d
4421  orl-rat, 14d, 4421/6802 mg/kg
6802  orl-rat, 14d
  Anon 1986b
 
Effects on reproduction of mammals :
Trichloroethylene appears to be of low reproductive toxicity.

There were no significant effects on fertility, teratogenicity
or neonatal development in rodents. 
Delayed ossification of the
sternum and displacement of the right ovary were observed in
the offsping of treated Long-Evans rats, but these do not
represent important embryotoxic effects 
(Schwetz et al. 1975,Dorfmueller et al. 1979, Taylor et al. 
1985, Ghantous et al.1986, Manson et al. 1984, Zenick et al. 
1984, Borzelleca & Carchman 1982, Fawell & Hunt 1988).
 
Other information of mammals :
The toxicology of trichloroethylene has been well studied and
it appears to be of low acute and chronic toxicity. 
The
principal target organs are the CNS and liver, although recent
evidence suggests that trichloroethylene may be nephrotoxic in
rodents following long-term exposure
(Fawell & Hunt 1988,Tucker et al. 1982, Torkelson & Rowe 1982,
Adams et al. 1951, Kjellstrand et al. 1982, Kanje et al. 1981,
Stott et al. 1982, Kjellstrand et al. 1981, Aranyi et al. 1986, 
Sanders et al. 1982, WHO 1985, Feldman et al. 1985, 
Vernon & Ferguson 1969, James, 1963, Hayden et al. 1976, 
Wells 1982, Buben & O'Flaherty 1985, US NTP 1983, 
Kyrklund et al. 1983, Silverman & Williams 1975, 
Mitchell & Parsons-Smith 1969, Barret et al. 1982,
Vyskocil 1953).
 
Carcinogenicity :
In 1976 the National Cancer Institute study found an increase
in liver tumours in C6B3F1 mice following chronic oral exposure
to trichloroethylene. 
An increase in forestomach tumours in
Swiss mice and lung tumours in NMRI mice from oral and
inhalation exposure have also been reported. 
The carcinogenic
potential of trichloroethylene appears to be affected by the
presence of stabilisers. 
There was no evidence of
hepatocarcinogenicity in Osborne-Mendel rats. 
However, a number
of renal adenocarcinomas have been recently reported in rats
following long-term oral administration, which are rare in
untreated controls. 
Epidemiology studies are insufficient to
assess whether trichloroethylene causes cancer in man
(WHO 1985, Dekant et al. 1986a, Henschler et al. 1984, Fukuda
et al., Henschler et al. 1980, Van Duuren et al. 1983, Tu et al.
1985, Blair et al. 1979, Tola et al. 1980, Paddle 1983, Fawell
& Hunt 1988).
 
Mutagenicity :
There is conflicting evidence that trichloroethylene is
mutagenic. 
Both positive and negative results were reported in
the Ames test with and without metabolic activation.

Trichloroethylene does no appear to be mutagenic in yeast in
the absence of metabolic activation, but the position is
unclear in the presence of S-9. 
Under certain conditions of
growth, trichloroethylene disrupts mitotic segregation in the
fungus Aspergillus nidulans. 
Unscheduled DNA synthesis and
chromosome aberrations were reported in human lymphocytes
following exposure to this compound. 
The metabolite
S-1,2-dichlorovinylcysteine was mutagenic in the Ames test
without metabolic activation. 
The differences in mutagenicity
observed in these studies may be partly explained by the purity
and nature of the additives present in the samples tested. 
Both
epichlorohydrin and epoxybutane, two stabilizers found in
technical grade trichloroethylene, were mutagenic in vitro. 
At
present, there are inadequate data to evaluate the mutagenic
potential of this chemical (Waskell 1978, Bartsch et al. 1979, 
Cerna & Kypenova, Greim et al. 1975, Bronzetti et al. 1978, 
Callen et al. 1980, Rossi et al. 1983, Crebelli et al. 1985, 
Slacik-Erben et al. 1980, Bergman 1983, Walles 1986, Perocco & 
Prodi 1981, Konietzko et al. 1978, Dekant et al. 1986b).
 
Effects on invertebrates :
EC50, Eisenia foetida, 1000 mg/kg, 28d (Anon 1986b).
 
Effects on plants :
EC50, Brassica rapa sativa rapifera, 1000 mg/kg, 14d;
EC50, Avena sativa, 1000 mg/kg, 14d (Anon 1986b).
 
Maximum longterm immission concentration in air for plants,mg/m3 :
30  VDI 2306
 
Maximum longterm immission concentration in air for plants,ppm :
VDI 2306
 
Effects on microorganisms :
EC50, Photobacterium phosphoreum, 115 mg/l, 15 min;
EC50, assimilationtest, 530 mg/l, 24hr (Anon 1986b).

Toxicity threshold (cell multiplication inhibition test):
bacteria (Pseudomonas putida): 65 mg/l
(Bringmann & Kühn 1980a).
 
EC50 values to algae, mg/l :
450  96hr, grw, Scenedesmus subspicatus
  Geyer et al. 1985
  --
450  4d, Scenedesmus subspicatus, Anon 1986b
 
LOEC values to algae, mg/l :
63  rpd, schr, Microcystis aeruginosa
  Bringmann & Kühn 1976
 
NOEC values to algae, mg/l :
175  rpd, schr, Selenastrum capricornutum
  Slooff et al. 1983
 
LC50 values to crustaceans, mg/l :
18  48hr, Daphnia magna, LeBlanc 1980
  --
65  48hr, Daphnia magna
45  48hr, Daphnia pulex
57  48hr, Daphnia cucullata
  Canton & Adema 1978
  --
85.2  48hr, Daphnia magna
100  Daphnia magna
94  Daphnia magna
41  Daphnia magna
43  Daphnia magna
56  Daphnia magna
51  Daphnia pulex
39  Daphnia pulex
  Anon 1986b
  --
30  48hr, Asellus aquaticus, Slooff 1983
24  48hr, Gammarus pulex, Slooff 1983
 
EC50 values to crustaceans, mg/l :
1313  24hr, Daphnia magna, Anon 1986b
 
LC50 values to fishes, mg/l :
41  96hr, Pimephales promelas,Könemann 1979
55  7d, Poelicia reticulata
  --
42  48hr, Salmo gairdneri
  Slooff et al. 1983
  --
45  96hr, Lepomis macrochirus
  Buccafusco et al. 1981
  --
44  96hr, Pimephales promelas
  Veith et al. 1983
  --
136  48hr, 136/203 mg/l, Leuciscus idus
203  melanotus
40.7  96hr, Pimephales promelas
66.8  96hr, Pimephales promelas
44.7  96hr, Lemomis macrochirus
  Anon 1986b
  --
45  96hr, flow-through, Pimephales promelas
  USEPA 1984
  --
59  48hr, Oryzias latipes, MITI 1992
  --
44.1  96 hr, Pimephales promelas, Geiger et al. 1985
 
EC50 values to fishes, mg/l :
21.9  96hr, Pimephales promelas, Anon 1986b
 
Other information of water organisms :
EC50 (24hr) 410 mg/l, rpd, Tetrahymena pyriformis (Yoshioka et
al. 1985).

LC50, 48hr, 132 mg/l, Tubificidae
LC50, 48hr, 64 mg/l, Chironomus gr. thummi
LC50, 48hr, 75 mg/l, Erpobdella octoculata
LC50, 48hr, 56 mg/l, Lymnaea stagnalis
LC50, 48hr, 42 mg/l, Dugesia cf. lugubris
LC50, 48hr, 75 mg/l, Hydra oligactis
LC50, 48hr, 110 mg/l, Corixa punctata
LC50, 48hr, 49 mg/l, Ischura elegans
LC50, 48hr, 70 mg/l, Nemoura cinerea
LC50, 48hr, 42 mg/l, Cloeon dipterum
(Slooff 1983).

Toxicity threshold (cell multiplication inhibition test):
green algae (Scenedesmus quadricauda): >1000 mg/l
protozoa (Entosiphon sulcatum): 1200 mg/l
(Bringmann & Kühn 1980a).
 
Other information :
Atmosperic contamination with trichloroethylene has been
implicated as a possible factor in the depletion of the ozone
layer (Fawell & Hunt 1988).

Since trichloroethylene is virtually insoluble in water, and
has a specific gravity heaviere then water, any pollution of
groundwater is likely to persist. 
There is no indication that
trichloroethylene is produced from chlorination of natural
waters (Fawell & Hunt 1988).

References
2149Adams, E.M., Spencer, H.C., Rowe, V.K. McCollister, D.D. & Irish, D.D. 1951. Vapour toxicity of trichloroethylene determined by experiments on laboratory animals. Archives of Industrial Hygiene and Occupational Medicine 4: 469 - 481. Adams, E.M., Spencer, H.C., Rowe, V.K. McCollister, D.D. & Irish, D.D. 1951. Vapour toxicity of trichloroethylene determined by experiments on laboratory animals. Archives of Industrial Hygiene and Occupational Medicine 4: 469 - 481.
2358Anon 1986b. Beitrag zur Beurteilung von 19 gefährlichen Stoffen in oberirdischen Gewässern. Texte 10. Umweltbundesamt. pp. 163.
2357Anon 1988. Concentrations of industrial organic chemicals measured in the environment: The influence of physico - chemical properties, tonnage and use pattern. Technical report no 29. European chemical industry ecology & toxicology centre, ECETOC. pp. 105.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
2333Anon. 1987b. Nedbrydelighed af miljøfremmede organiske stoffer. Utredningsrapport U1. Lossepladsprojektet.
2283Anon.1986a. Evaluation of the OECD laboratory intercomparison testing on the determination of the partition coefficient n-octanol-water by reverse phase HPLC. Report. Fraunhofer-Institut für Umweltchemie und Ökotoxikologie.
2150Aranyi, C., O'Shea, W.J., Graham, J.A. & Miller, F.J. 1986. The effects of inhalation of organic chemical air contaminants on murine lung host defences. Fundamental and Applied Toxicology 6:713 - 720.
2605Banerjee, S., Yalkowsky, S. H. and Valvani, S. C. 1980. Environ. Sci. Technol. 14: 1227 - 1229.
2151Barret, L., Arsac. P., Vincent, M., Faure, J., Garrel, S. & Reymond F. 1982. Evoked trigeminal nerve potential in chronic trichloroethylene intoxication. Journal of Toxicology - Clinical Toxicology 19: 419 - 423.
2380Barrio-Lage, G. et al. 1987. Kinetics of the depletion of trichloroethene. Environ. Sci. Technol. 21 (4): 366 - 370.
2152Bergman, K. 1983. Interactions of trichloroethylene with DNA in vitro and with RNA and DNA of various mouse tissues in vivo. Archives of Toxicology 54: 181 - 193.
2153Blair, A., Decoufle, P. & Grauman, D. 1979. Causes of death among laundry and dry cleaning workers. American Journal of Public Health 69: 508 - 511.
2154Borzelleca, J.F. & Carchman, R.A. 1982. Effects of selected organic drinking water contaminants on male reproduction. United States Environmental Protection Agency EPA-600/S1-82-009.
2373Bouwer, E.J. & McCarty, P.L. 1983a. Transformation of 1- and 2-carbon halogenated aliphatic organic compunds under methanogenic conditions. Applied and Environmental Microbiology 45 (4): 1286 - 1294.
2371Bouwer, E.J. et al. 1981. Anaerobic degradation of halogenated 1- and 2-carbon organic compounds. Environ. Sci. & Technol. 15 (5): 595 - 602.
187Bringmann, G. & Kühn, R. 1976. Vergleichende Befunde der Schadwirkung wassergefährdender Stoffe gegen Bakterien (Pseudomonas putida) und Blaualgen (Microcystis aeruginosa). Gwf-Wasser-Abwasser 117(9).
188Bringmann, G. & Kühn, R. 1980a. Comparison of the toxicity thresholds of water pollutants to bacteria, algae and protozoa in the cell multiplication inhibition test. Water Res. 14: 231 - 241.
2155Buben, J.A. & O'Flaherty, E.J. 1985. Delineation of the role of metabolism in the hepatotoxicity of trichloroethylene and perchloroethylene: A dose-effect study. Toxicology and Applied Pharmacology 78: 105 - 122.
207Buccafusco, R.J., Ells, S.J. & LeBlanc, G.A. 1981. Acute toxicity of priority pollutants to bluegill (Lepomis macrochirus). Bull. Environ. Contam. Toxicol. 26: 446 - 452.
2156Callen, D.F., Wolf, C.R. & Philpot, R.M. 1980. Cytochrome P-450 mediated genetic activity and cytotoxicity of seven halogenated aliphatic hydrocarbons in Saccharomyces cerevisiae. Mutation Research 77: 55 - 63.
241Canton, J.H. & Adema, D.M.M. 1978. Reproducibility of short-term and reproduction toxicity experiments with Daphnia magna and comparisons of the sensitivity of Daphnia magna with Daphnia pulex and Daphnia cucullata in short-term experiments. Hydrobiologia 59(2): 135 - 140.
2157Cerna, M. & Kypenova, H. 1977. Mutagenic activity of chloroethylenes analysed by screening system tests. Mutation Research 46: 214 - 215.
2158Crebelli, R., Conti, G., Conti, L. & Carere, A. 1985. Mutagenicity of trichloroethylene, trichloroethanol and chloral hydrate in Aspergillus nidulans. Mutation Research 155: 105 - 111.
2159Dekant, W., Metzler, M. & Henschler, D. 1986a. Identification of S-1,2-dichlorovinyl-N-acetyl-cysteine as a urinary metabolite of trichlorothylene: a possible explanation for its nephrocarcinogenicity in male rats. Biochemical Pharmacology 35: 2455 - 2458.
2160Dekant, W., Vamvakas, S., Berthold, K., Schmidt, S., Wild, D. & Henschler, D. 1986b. Bacterial beta-lyase mediated cleavage and mutagenicity of cysteine conjugates derived from the nephrocarcinogenic alkenes trichloroethylene, tetrachloroethylene and hexachlorobutadiene. Chemicobiological Interactions 60: 31 - 45.
2094Dilling, W.L., Tefertiller, N.B. & Kallos, G.J. 1975. Evaporation rates and reactivities of methylene chloride, chloroform, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other chlorinated compounds in dilute aqueous solutions. Environm. Sci. and Techn. 9 (9): 833 - 837.
2161Dorfmueller, M.A., Henne, S.P., York, R.G., Bornschein, R.L. & Manson, J.M. 1979. Evaluation of teratogenicity and behavioural toxicity with inhalation exposure of maternal rats to trichloroethylene. Toxicology 14: 153 - 166.
2148Fawell, J.K. & Hunt, S. 1988. Environmental toxicology - organic pollutants. Ellis Horwood Limited, Chichester. 440 s.
2162Feldman, R.G., White, R.F., Currie, F.N., Travers, P.H. & Lessell, S. 1985. Long-term follow-up after single toxic exposure to trichloroethylene. Americal Journal of Industrial Medicine 8: 119 - 126.
2382Fogel, M.M., Taddeo, A.R. & Fogel, S. 1986. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Applied and Environmental Microbiology 51 (24): 720 - 724.
2163Fukuda, K., Takemoto, K. & Tsuruta, H. 1983. Inhalation carcinogenicity of trichloroethylene in mice and rats. Industrial Health 21: 243 - 254.
3296Geiger, D. L. et al. 1985. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas) Vol. 2. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, Winconsin, U.S.A. 326.
1770Geyer, H. Scheunert, I. & Korte, F. 1985. The effects of organic environmental chemicals on the growth of the alga Scenedesmus subspicatus: A contribution to Environmental Biology. Chemosphere 14: 1355.
2164Ghantous, H., Danielsson, B.R.G., Dencker, L., Gorczak, J. & Vesterberg, O. 1986. Trichloroacetic acid accumulates in murine amniotic fluid after tri-and tetrachloroethylene inhalation. Acta Pharmacologica et Toxicologica 58: 105 - 114.
2165Greim, H., Bonse, G., Radwan, Z., Reichert, D. & Henschler, D. 1975. Mutagenicity in vitro and potential carcinogenicity of chlorinated ethylenes as a function of metabolic oxirane formation. Biochemical Pharmacology 24: 2013 - 2017.
2166Hayden, J.W., Comstock, E.G. & COmstock, B.S. 1976. The chemical toxicology of solvent abuse. Clinical Toxicology 9: 169 - 184.
2168Henschler, D., Elsasser, H., Romen, W. & Eder, E. 1984. Carcinogenicity study of trichloroethylene, with and without epoxide stabilizers, in mice. Journal of Cancer Research and Clinical Oncology 107: 149 - 156.
2167Henschler, D., Romen, W., Elsasser, H.M., Reichert, D., Eder, E. & Radwan, Z. 1980. Carcinogenicity study of trichloroethylene by long-term inhalation in three animal species. Archives of Toxicology 43: 237 - 248.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
2169James, W.R.L. 1963. Fatal addiction to trichloroethylene. British Journal of Industrial Medicine 20: 47 - 49.
2170Kanje, M., Kjellstrand, P., Fex, K. & Walldorf, A. 1981. Neurotransmitter metabolising enzymes and plasma butyrylcholinesterase in mice exposed to trichloroethylene. Acta Pharmacologica et Toxicologica 49: 205 - 209.
2172Kjellestrand, P., Edstrom, A., Bjerkemo, M. & Holmquist, B. 1982. Effects of trichloroethylene inhalation on acid phosphatase in rodent brain. Toxicology Letters 10: 1 - 5.
2171Kjellestrand, P., Kanje, M., Mansson, L., Bjerkemo, M., Mortensen, I., Lanke, J. & Holmquist, B. 1981. Trichloroethylene: effects on body and organ weights in mice, rats and gerbils. Toxicology 21; 105 - 115.
2173Konietzko, H., Haberlandt, W., Heilbronner, H., Reill, G. & Weichardt, H. 1978. Chromosome studies on trichloroethylene workers. Archives of Toxicology 40: 201 - 206.
2174Kyrklund, T., Alling, C., Haglid, K. & Kjellstrand, P. 1983. Chronic exposure to trichloroethylene: lipid and acyl group composition in gerbil celebral cortex and hippocampus. Neurotoxicology 4 (4): 35 - 42.
2369Kästner, M. 1986. Biologische Elimination von leichtfluchtigen Halogenkohlenwasserstoffen (Theoretische Glundlagen und Laborversuche). Fachseminar - Bodensanierung und Grundwasserreinigung - Wiedernutzung von Altstandorten. 24-25/9 1986 in Braunsweig: 155 - 166.
761Könemann, W.H. 1979. Quantitative structure-activity relationships for kinetics and toxicity of aquatic pollutants and their mixtures in fish. Univ. Utrecht, Netherlands.
798LeBlanc, G.A. 1980. Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull. Environm. Contam. Toxicol. 24: 684 - 691.
2175Manson, J.M., Murphy, M., Richdale, N. & Smith, M.K. 1984. Effects of oral exposure to trichloroethylene on female reproductive function. Toxicology 32: 229 - 242.
2176Mitchell, A.B.S. & Parsons-Smith, B.G. 1969. Trichloroethylene neuropathy. British Medical Journal 1: 422 - 423.
3105MITI 1992. Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Compild under the Safety Division Basic Industries Bureau Ministry of International Trade & Industry, Japan. Edited by Chemicals Inspection & Testing Institute, Japan.
2177Paddle, G.M. 1983. Incidence of liver cancer and trichloroethylene manufacture: joint study by industry and a cancer registry. British Medical Journal 286: 846.
2178Perocco, P. & Prodi, G. 1981. DNA damage by haloalkanes in human lymphocytes cultured in vitro. Cancer Letters 13: 123 - 218.
2179Rossi, A.M., Migliore, L., Barale, R. & Loprieno, N. 1983. In vivo and in vitro mutagenicity studies of a possible carcinogen, trichloroethylene, and its two stabilisers, epichlorohydrin and 1,2-epoxybutane. Teratogenesis, Carcinogenesis and Mutagenesis 3: 75 - 87.
2324Sabljic, A. 1987. On the prediction of soil sorption coefficients of organic pollutants from molecular structure: application of molecular topology model. Environ. Sci. Technol. 21: 358 - 366.
2180Sanders, V.M., Tucker, A.N., White, K.L., Kauffmann, B.M., Hallett, P., Carchman, R.A., Borzelleca, J.F. & Munson. A.E. 1982. Humoral and cell-mediated immune status in mice exposed to trichloroethylene in the drinking water. Toxicology and Applied Pharmacology 62: 358 - 368.
2436Schwarzenbach, R. P., Giger, W., Hoehn, E. and Schneider, J. K. 1983. Behavior of organic compounds during infiltration of river water to groundwater. Field studies. Environ. Sci. Technol. 17 (8): 472 - 479.
2181Schwetz, B.A., Leong, B.K.J. & Gehring, P.J. 1975. The effect of maternally inhaled trichloroethylene, perchloroethylene, methyl chloroform and methylene chloride on embryonal and fetal development in mice and rats. Toxicology and Applied Pharmacology 32: 84 - 96.
2182Slacik-Erben, R., Roll, R., Franke, G. & Uehleke, H. 1980. Trichloroethylene vapours do not produce dominant lethal mutations in male mice. Archives of Toxicology 45: 37 - 44.
1304Slooff, W., Canton, J.H. & Hermens, J.L.M. 1983. Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds. I (sub)acute toxicity tests. - Aquatic toxicology 4: 113 - 128.
1302Slooff, W. 1983. Benthic macroinvertebrates and water quality assessment: some toxicological considerations. Aquat. Toxicol. 4: 73.
2183Stott, W.T., Quast, J.F. & Watanabe, P.G. 1982. The pharmacokinetics and macromolecular interactions of trichloroethylene in mice and rats. Toxicology and Applied Pharmacology 62: 137 - 151.
2602Suntio, L. R., Shiu, W. Y. and Mackay, D. 1988. A review of the nature and properties of chemicals present in pulp mill effluents. Chemosphere 17(7): 1249 - 1290.
2335Tabak, H.H., Quave, S.A., Mashni, C.I. & Barth, E.F. 1981. Biodegradability studies with organic priority pollutant compounds. Journal WPCF. 53: 1503 - 1518.
2184Taylor, D.H., Lagory, K.E., Zaccaro, D.J., Pfohl, R.J. & Laurie, R.D. 1985. Effect of trichloroethylene on the exploratory and locomotor activity of rats exposed during development. Science of the Total Environment 47: 415 - 420.
2185Tola, S., Vilhunen, R., Järvinen, E. & Korkala, M.L. 1980. A cohort study on workers exposed to trichloroethylene. Journal of Occupational Medicine 22: 737 - 740.
2186Torkelson, T.R. & Rowe, V.K. 1982. Halogenated aliphatic hydrocarbons containing chlorine, bromine and iodine. In Patty's Industrial Hygiene and Toxicology Volume 2B, edited by G.D. Clayton and F.E. Clayton, 3553 - 3560, Chapter 48. J. Wiley and Sons.
2187Tu, A.S., Murray, T.A., Hatch, K.M., Sivak, A. & Milman, H.A. 1985. In vitro transformation of BALB/c-3T3 cells by chlorinated ethanes and ethylenes. Cancer Letters 28: 85 - 92.
2188Tucker, A.N., Sanders, V.M., Barnes, D.W., Bradshaw, T.J., White, K.L., Sain, L.E., Borzelleca, J.F. & Munson, A.E. 1982. Toxicology of trichloroethylene in the mouse. Toxicology and Applied Pharmacology 62: 351 - 357.
2189US NTP 1983. Technical report on the carcinogenesis studies of trichloroethylene (without epichlorohydrin) in F344/n rats and BCF mice. Research Triangle Park, NC, National Toxicology Program, NIH Publication No 83 - 1979, NTP TR 243.
2757USEPA 1984. Aquatic toxicity tests to characterize the hazard of volatile organic chemicals in water. A toxicity data summary. Part 1. Report No. EPA-600/3-83-009. NITS No. PB84-141506. (Ed): Ahmad, N. et al. U.S. Environmental protection agency, Duluth, MN 55804.
2190Van Duuren, B.L., Kline, S.A., Melchionne, S. & Seidman, I. 1983. Chemical structure and carcinogenicity relationships of some chloroalkene oxides and their parent olefins. Cancer Research 43: 159 - 162.
1599VDI 2306. VDI-Kommission Reinhaltung der Luft. Maximale Immissions-Konzentrationen (MIK). Organische Verbildungen.
1456Veith, G.D. et al. 1983. Estimating the acute toxicity of narcotic industrial chemicals to fathead minnows. In: Aquatic toxicology and hazard assessment: sixth symposium. ASTM STP 803. Bishop, W.E. et al. (eds.). Am. Soc. Test. Mater, Philadelphia, Pa, 90.
2191Walles, S.A.S. 1986. Induction of single-strand breaks in DNA of mice by trichloroethylene and tetrachloroethylene. Toxicology Letters 31: 31 - 35.
2192Waskell, L. 1978. A study of the mutagenicity of anaesthetics and their metabolites. Mutation Research 57: 141 - 153.
2193Wells, J.C.D. 1982. Abuse of trichloroethylene by oral self-administration. Anaesthesia 37: 440 - 441.
2379Wilson, B.H. & White, M.V. 1986. A fixed-film bioreactor to treat trichloroethylene-laden waters from interdiction wells. Presented at the sixth national symposium and exposition on aquifer restoration and groud water monitoring. May 19 - 22, Columbus, Ohio.
2383Wilson, J.T. & Wilson, B.H. 1985. Biotransformation of trichloroethylene in soil. Applied and Environmental Microbiology 49: 242 - 243.
2377Wilson, J.T. et al. 1983a. Enumeration and characterization of bacteria indigenous to a shallow water-table aquifer. Ground Water 21 (2): 134 - 142.
2381Wilson, J.T. et al. 1983b. Biotransformation of selected organic pollutants in ground water. Dev. Ind. Microbiol. 24: Kap 17: 225 - 235.
2376Wilson, J.T., Enfield, C.G., Dunlap, W.H. et al. 1981. Transport and fate of selected organic pollutants in a sandy soil. J. Environ. Qual. 10 84): 501 - 506.
2194World Health Organization 1985. Trichloroethylene. Environmental Health Criteria, EHC 50, World Health Organization, Geneva.
3030Yaws, C., Yang, H-C. & Pan, X. 1991. Henry's law constants for 362 organic compounds in water. Chemical Engineering. November. p 179 - 185.
1766Yoshioka, Y., Ose, Y. & Sato,T. 1985. Testing the toxicity of chemicals with Tetrahymena pyriformis. Sci. Total. Environ. 43:149.
2195Zenick, H., Blackburn, K., Hope, E., Richdale, N. & Smith, M.K. 1984. Effects of trichloroethylene exposure on male reproductive function in rats. Toxicology 31: 237 - 250.

 
 
© Copyright Environmental Administration