www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


29.3.2024

Data bank of environmental properties of chemicals


Chemical
p-cresol
CAS-number :
106-44-5
 
Synonyms :
1-hydroxy-4-methylbenzene
4-hydroksitolueeni
4-hydroxytoluene
4-methylphenol
4-metyylifenoli
p-kresoli
p-methylphenol
p-metyylifenoli
 
Sumformula of the chemical :
C7H8O
EINECS-number :
2033986
 
Uses :
Intermediate; disinfectant.
 
State and appearance :
Yellowish liquid
 
Odor :
Quality: tarlike
hedonic tone: pungent
Taste threshold conc.: 0.002 mg/l
Odor threshold: detection: 0.2 mg/l (Verschueren 1983).
 
Molecular weight :
108.15
 
Spesicif gravity (water=1) :
1.0347  at 20/4 °C
 
Conversion factor, 1 ppm in air=_mg/m3 :
4.5  mg/m3, Verschueren 1983
 
Conversion factor, 1 mg/m3 in air=_ppm :
0.22  ppm, Verschueren 1983
 
Vapor pressure, mmHg :
0.04  20 °C
0.11  25 °C
53 °C
0.13  at 25 °C, Riddick et al. 1986
 
Water solubility, mg/l :
24000  40 °C
53000  100 °C
22600  at 40 °C, Riddick et al. 1986
 
Melting point, °C :
34.8 
 
Boiling point, °C :
202 
 
Log octanol/water coefficient, log Pow :
1.94  ANON 1986
2.2  Anon 1986
1.92  1.92/1.94
1.94  Verschueren 1983
1.97  Sangster 1989
1.94  Hansch & Leo 1985
 
Henry's law constant, Pa x m3/mol :
0.86  Anon 1988
0.03971  calc. Yaws et al. 1991
0.0973  calc. Leuenberger et al. 1985
 
Volatilization :
4-Cresol has a low volatility from water, having a calculated
Henry's Law constant of 9.6x10-7 atm-m3/mol (Leuenberger 1985).

Based on laboratory rata on its rate of evaporarion from water,
4-cresol would have an estimated half-life of 1.4 year and 290
years in a typical river and lake, respectively (Lyman et al 
1982) (Smith & Bomberger 1980).
 
Adsorption/desorption :
The value of Koc measured on Brookstone clay loam soil is 49,
whereas that predicted from water solubility is 0.9 (Boyd 1982).

On five fine-textured B horizon clay soils, the distribution
between soil and water ranged from 5 to 50. 
For these
subsurface soils the levels of free iron oxide and pH were the
key factors in determing adsoption capacity (Artiola-Fortuny 
1982).

The Koc of 4-cresol to 3 subsoils (% organic carbon) was:
Apison (0.11) - 3420; Fullerton (0.05) - 3350; and Dormont
(1.2) - 115. 
Koc's for phenols predicted from water
solubilities were only good for soils with organic carbon
contents >0.5%. 
Adsorptivities were much greater than predicted
for soils with low organic carbon content because interactions
such as H-bonding were dominant (Southworth & Keller 1986).
 
Mobility :
Equilibrium distribution:
         mass %
air     22.58
water   75.58
solid    1.84
(Anon 1988)
 
Photochemical degradation in air :
Photooxidation half-life in air:
15hr - 1.5hr, based upon measured rate data for the vapor phase
reaction with hydroxyl radicals in air (Howard 1991).

In the atmosphere during daylight hours 4-cresol reacts
principally with photochemically generated hydroxyl radicals
with a resulting half-life of 10 hr. 
However in the nighttime
especially in the moderately polluted atmospheres where
concentrations of O3 and NO2 are high, reaction with NO3
radicals becomes the predominant sink for 4-cresol (half-life 4
min) with the formation of nitrocresols (Atkinson et al. 1979) 
(Atkinson et al. 1984).

Under photochemical smog conditions a half-life of 3 hr has
been reported and nitrocresols have been formed (Atkinson et al 
1980) (Nojima & Kanno 1977).
 
Photochemical degradation in water :
Aquatic photolysis half-life:
283hr, based upon photolysis rate data for April sunlight.

Photooxidation half-life in water:
1.3yr - 6d, scientific judgement based upon measured rate data
for reactions with singlet oxygen and hydroxyl radicals in
aqueous solution (Howard 1991).

4-cresol in pure water photolyzed in the presence of sunlight
(half-life 35 days) in the laboratory. 
The addition of humic
acid to the water increases this rate by a factor of 12
(half-life 3 days). 
The resulting photolysis half-life in a 
river, eutrophic lake or pond and oligotrophic lake are 400, 
830 and 200 summer days (12 hr of sunlight), respectively.The 
absorptivity of 4-cresol increases markedly as the pH increases 
from 5.1 to 8.9 and photolysis may therefore be much more 
important in alkaline lakes (Smith et al. 1978).
 
Half-life in air, days :
 
0.625  15hr - 1.5hr,
0.0625  based upon photooxidation half-life in air.
  Howard 1991
 
Half-life in soil, days :
0.666  16hr - 1hr,
0.0416  scientific judgement based upon estimated unacclimated aqueous aerobic biodegradation half-life.
  Howard 1991
 
Half-life in water, days :
0.666  16hr - 1hr,
0.0416  in surface water: scientific judgement based upon unacclimated marine and freshwater grab sample data.
28  28d - 2hr,
0.083  in ground water: scientific judgement based upon estimated unacclimated aqueous aerobic biodegradation half-life and aqueous anaerobic half-life.
  Howard 1991
 
Aerobic degradation in water :
Aerobic half-life:
16hr - 1hr, scientific judgement based upon unacclimated marine 
and freshwater grab sample data (Howard 1991).
 
Anaerobic degradation in water :
Anaerobic half-life:
28d - 10d, scientific judgement based upon anaerobic screening
test data (Howard 1991).
 
Total degradation in soil :
Decomposition period by a soil microflora: 1 day (Verschuren 
1983).

4-Cresol completely degraded in soil in 7 days at an
application rate of 500 ppm (Huddleston et al. 1986).
 
Total degradation in sediment :
No mineralization of 4-cresol was observed when incubated for 
29 weeks in anaerobic lake sediment (Horowitz et al. 1982).
 
Ready biodegradability :
Confirmed to be biodegradable (Anon. 1987).
 
Other information of degradation :
Degradation of p-cresol:
*-------------------------------------------------------------*
ENVIRONMENT      INIT.CONC   REDOX-   TEMP   DEGRADATION   REF
                    mg/l     COND.     °C       %/day
*-------------------------------------------------------------*
water              1 - 3     aerobic   20       100/8       a
water              1 - 3     anaerobic 20       100/41      a
water              100       aerobic   22        70/2       b
water              100       aerobic   22       100/2       b
sediment           100       aerobic   22       100/2       b
sediment           100       aerobic   22       100/4       b
groundwater    appr. 0.2     sulfate   20        90/10      c
                             reducing
sludge         appr. 50      anaerobic 35        51/28      d
sludge         appr. 50      anaerobic 35       100/21      d
soil suspension     10       aerobic   25       100/1       e
*-------------------------------------------------------------*
a) Delfino & Miles 1985           d) Horowirz et al. 1982
b) Van Veld & Spain 1983          e) Alexander & Lustigman 1966
c) Smolenski & Suflita 1987
(Anon 1987b).

75 % reduction of the nitrification process in non adapted
activated sludge at: 16.5 mg/l (Meinck et al. 1970).

Inhibition of degradation of glucose by Pseudomonas fluorescens
at: 30 mg/l. 
Inhibition of degradation of glucose by E. coli
at: >1000 mg/l (Bringman & Kuhn 1960).

Biodegradation: decomposition period by a soil microflora:
1 day (Verschuren 1983).

4-Cresol has been shown to be biodegradable rapidly in
screening studies using soil, sewage, activated sludge and
freshwater inocula. 
Acclimation is frequently not necessary.

Complete COD removal was obtained in a simulated biological
treatment plant in 16-74 hr. 4-Cresol biodegrades rapidly in
environmental waters including oligotropic lakes, eutrophic
ponds, rivers, creeks and bays (Howard 1989).

Under anaerobic conditions 4-cresol was mineralized in 3 and 8
weeks in two screening studies using digester sludge inocula
(Boyd et al. 1983) (Shelton & Tiedje 1984).

In a study using domestic anaerobic sludge inocula
mineralization occurred after 15 days at a 4-cresol concn of
100 ppm and increased to >39 days at a concn of 400 ppm
(Fedorak & Hrudey 1984).
 
Other information of bioaccumulation :
Using the log octanol/water partition coefficient of 1.94 a
bioconcentration factor of 18 is estimated. 
Therefore 4-cresol
would not be expected to biocontrate significantly in fish
(Lyman et al. 1982).
 
LD50 values to mammals in oral exposure, mg/kg :
207  orl-rat, Lewis & Sweet 1984
1800  orl-rat, Patty 1967
1100  orl-rbt, Patty 1967
 
LD50 values to mammals in non-oral exposure , mg/kg :
160  unk-mus, Lewis & Sweet 1984
301  skn-rbt, - " -
750  skn-rat, - " -
 
LD50 values to birds in oral exposure, mg/kg :
96  >96.0, orl-Agelaius phoeniceus
  Schafer et al. 1983
 
Maximum longterm immission concentration in air for plants,mg/m3 :
0.2  VDI 2306
 
Maximum longterm immission concentration in air for plants,ppm :
0.05  VDI 2306
 
NOEC values to algae, mg/l :
Scenedesmus, Meinck et al. 1970
 
NOEC values to crustaceans, mg/l :
12  srv, act, Daphnia, Meinck et al. 1970
rpd, schr, Scenedesmus
 
LC50 values to fishes, mg/l :
7.9  96 hr, Salmo gairdneri, DeGraeve et al.
  1980
  --
24 hr, Salmo trutta, Anon. 1973 a
  --
17  24 hr, Rutilus rutilus, Jones 1971
  --
19  96hr, Pimephales promelas
  Vincent et al. 1976
  --
7.5  96hr, Salmo gairdneri
  Hodson et al. 1984
  --
21  24hr, Carassius carassius
17  24hr, Rutilus rutilus
16  24hr, Tinca tinca
  Anon 73a
  --
Salmo gairdneri, Verschueren 1983
  --
16.5  96 hr, Pimephales promelas, Geiger et al. 1986
 
EC50 values to fishes, mg/l :
16.5  96 hr, Pimephales promelas, Geiger et al. 1986
 
Other information of water organisms :
EC50 (24 hr), 160 mg/l, rpd, Tetrahymena pyriformis 
(Yoshioka et al. 1985).

EC50 (2 d), 168.25 mg/l, grw, Tetrahymena pyriformis 
(Schultz 1987).

References
2349Alexander, M. & Lustigman, B.K. 1966. Effect of chemical structure on microbial degradation of substituted benzenes. J. Agr. Food Chem. 14: 410 - 413.
2357Anon 1988. Concentrations of industrial organic chemicals measured in the environment: The influence of physico - chemical properties, tonnage and use pattern. Technical report no 29. European chemical industry ecology & toxicology centre, ECETOC. pp. 105.
59Anon. 1973a. European inland fishery advisory commission working party on water quality criteria for european freshwater fish, Water quality criteria for european freshwater fish. Water Res. 7: 929 - 941.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
2333Anon. 1987b. Nedbrydelighed af miljøfremmede organiske stoffer. Utredningsrapport U1. Lossepladsprojektet.
2283Anon.1986a. Evaluation of the OECD laboratory intercomparison testing on the determination of the partition coefficient n-octanol-water by reverse phase HPLC. Report. Fraunhofer-Institut für Umweltchemie und Ökotoxikologie.
3088Artiola-Fortuny, J. & Fuller, W. H. 1982. Soil Sci 133: 18 - 26.
3289Atkinson, R. et al. 1979. Adv. Photochem. 11: 375 - 488.
3288Atkinson, R. et al. 1980. Int. J. Chem. Kinet. 12: 779 - 836.
3290Atkinson, R. et al. 1984. Int. J. Chem. Kinetics 16: 887 - 898.
3269Boyd, S. A. 1982. Soil Sci 134: 337 - 347.
3291Boyd, S. A. et al. 1983. Appl. Environ. Microbiol. 46: 50 - 54.
1856Bringmann, G. & Kühn, R. 1960. Vergleichende toxikologische Befunde an Wasser-Bakterien. GWF-Wasser/Abwasser 6j. 81: 337.
331DeGraeve, G.M. et al. 1980. Toxicity of underground coal gasification condenser water and selected constituents to aquatic biota. Arch. Environ. Contam. Toxicol. 9: 543.
330DeGraeve, G.M., Geiger, D.L., Meyer, J.S. & Bergman, H.L. 1980. Acute and embryo-larval toxicity of phenolic compounds to aquatic biota. Arch. Environ. Contam. Toxicol. 9: 557 - 568.
2334Delfino, J.J. & Miles, C.J. 1985. Aerobic and anaerobic degradation of organic contaminants in Florida groundwater. Proceeding - Soil Crop Sci. Soc. Fla. 44: 9 - 14.
3284Fedorak, P. M. & Hrudey, S. E. 1984. Water Res. 18: 361 - 367.
3294Geiger, D. L. et al. 1986. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas) Vol. 3. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, Wisconsin, U.S.A., 328.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
1765Hodson, P.V., Dixon, D.G. & Kaiser, K.L.E. 1984. The measurement of median lethal doses (LD50s) as a rapid indication of contaminant toxicity to fish. Environ. Toxicol. Chem. 3: 243 - 254.
2337Horowitz, A., Shelton, D.R., Cornell, C.P. & Tredje, J.M. 1982. Anaerobic degradation of aromatic compounds in sediment and digested sludge. Dev. Ind. Microbial. 23: 435 - 444.
3047Howard, P. H. 1989. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. I: Large Production and Priority Pollutants. Lewis Publishers, Inc. Chelsea. pp 574.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
3285Huddleston, R. L. et al. 1986. Land treatment biological degradation processes pp 41 - 61 in Water Resource Symposium 13.
675Jones, H.R. 1971. Environmental control in the organic and petrochemical industries. Noyes Data Corporation 1971.
3281Leuenberger, C, et al. 1985. Water Res. 19: 885 - 894.
1589Lewis, R.J. & Sweet, D.V. 1984. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 83-107-4.
2960Lyman, W. J. et al. 1982. Handbook of Chemical Property Estimation Methods. Environmental behavior of organic compounds. McGraw-Hill New York.
950Meinck, F., Stoof, H. & Kohlschutter, H. 1970. Les eaux residuaires industrielles.
3292Nojima, K. & Kanno, S. 1977. Chemosphere 6: 371 - 376.
1644Patty, F.A. 1967. Industrial hygiene and toxicology. Vol 2. Interscience Publishers.
1973Pilli.A., Carle, D.O., Kline. E., Pickering. Q. & Lazorchak. J. 1988. Effets of pollution on freshwater organisms. JWPCF 60(6): 994 - 1065.
2971Riddick, J. A. et al. 1986. Organic solvents: Physical Properties and Methods of Purification, 4th Edit. New York: J. Wiley & Sons.
3104Sangster, J. 1989. Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data, Vol 18, No. 3: 1111 - 1229.
1743Schafer , E.W.Jr., Bowles, W.A.Jr., Hurlbut, J. 1983. The acute oral toxicity, repellency and hazard potential of 993 chemicals to one or more species of wild and domestic birds. Arch. Environ. Contam. Toxicol. 12: 355 - 382.
1925Schultz, T.W. 1987. The use of the ionization constant (pKa) in selecting models of toxicity in phenols. Ecotoxical. Environ. Saf. 14: 178.
3139Shelton, D. R. & Tiedje, J. M. 1984. Appl. Environ. Microbiol. 47: 850 - 7.
3293Smith, J. H. & Bomberger, D. C.Jr. 1980. Hydrocarbons and halogenated hydrocarbons in the aquatic environment Afgan, Mackay eds. Plenum NY. pp 445 - 451.
3282Smith, J. H. et al. 1978. Environ. Pathways of Selected Chemicals in Freshwater Systems part II Lab. Studies USEPA-600/7-78-074.
2353Smolenski, W.J. & Suflita, J.M. 1987. Biodegradation of cresol isomers in anoxic aquifers. Appl. Environ. Microbiol. 53: 710 - 716.
3283Southworth, G. R. & Keller, J. L. 1986. Water Air Soil Pollut. 28: 239 - 248.
2352Van Veld, P.A. & Spain, J.C. 1983. Degradation of selected xenobiotic compounds in three types of aquatic test systems. Chemosphere 12: 1291 - 1305.
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.
1474Vincent, R.M., Arthur, J.W. & Walbridge, C.R. 1976. Acute toxicity of selected organic compounds to fathead minnows. EPA-600/3-76-097.
3030Yaws, C., Yang, H-C. & Pan, X. 1991. Henry's law constants for 362 organic compounds in water. Chemical Engineering. November. p 179 - 185.
1766Yoshioka, Y., Ose, Y. & Sato,T. 1985. Testing the toxicity of chemicals with Tetrahymena pyriformis. Sci. Total. Environ. 43:149.

 
 
© Copyright Environmental Administration