www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


27.4.2024

Data bank of environmental properties of chemicals


Chemical
o-cresol
CAS-number :
95-48-7
 
Synonyms :
1-hydroxy-2-methylbenzene
2-cresol.
2-hydroksitolueeni
2-hydroxytoluene
2-kresoli
2-methylphenol
2-metyylifenoli
o-cresylic acid
o-kresoli
o-methylphenol
o-metyylifenoli
o-toluol
 
Sumformula of the chemical :
C7H8O
EINECS-number :
2024238
 
Purity, % :
80  80-98 % pure,
98 
 
Known impurities :
phenol * 2 - 20 %
 
Uses :
Disinfectant; food antioxidant, perfume manufacturing; dye
manufacturing; plastics and resins manufacturing.
 
State and appearance :
Clear to yellow solid. 
Liquid in warm temperature. 
Will sink
and dissolve at moderate rate.
 
Odor :
Phenolic, tarry odour. 
Recognition odour in air: 0.26 ppm;
lower odour threshold; 0.016 ppm; upper odour threshold: 4.1
ppm; medium taste threshold: 0.001 ppm (Sax 1986).

Odor threshold: detection: 1.4 mg/l
Taste threshold conc.: 0.003 mg/l (Verschueren 1983)
 
Molecular weight :
108.15
 
Spesicif gravity (water=1) :
1.048 
1.041 
 
Vapor density (air=1) :
3.72 
 
Conversion factor, 1 ppm in air=_mg/m3 :
4.5  mg/m3, Verschueren 1983
 
Conversion factor, 1 mg/m3 in air=_ppm :
0.22  ppm, Verschueren 1983
 
Vapor pressure, mmHg :
0.24  25 °C
64 °C
0.31  at 25 °C, Riddick et al. 1986
 
Water solubility, mg/l :
31000  40 °C
31  25 °C
56000  100 °C
30800  at 40 °C, Riddick et al. 1986
 
Melting point, °C :
31 
 
Boiling point, °C :
191 
 
Flashing point, °C :
81 
 
Log octanol/water coefficient, log Pow :
1.98  Sangster 1989
1.95  Hansch & Leo 1985
 
Henry's law constant, Pa x m3/mol :
0.08521  calc. Yaws et al. 1991
0.162  calc. Leuenberger et al. 1985
 
Volatilization :
2-Cresol has a low volatility from water, having a calculated
Henry's Law constant of 1.6x10-6 atm-m3/mol (Leuenberger et al 
1985).
 
Adsorption/desorption :
The value for Koc measured on Brookstone clay loam soil (pH
5.7) is 22 and that predicted from the water solubility.

Koc's for phenols predicted from water solubilities are only
good for soils with organic carbon contents greater than
approx. 0.5 %. 
Adsorptivities are greater than predicted for
soils with low organic carbon content because interactions such
as H-bonding are dominant (Boyd 1982) (Southworth & Keller 
1986).


On five fine-textured B horizon clay soils (pH 4.5 - 7.8) the
distribution between soil and water ranged from 2.8 to 500. 
For
these subsurface soils the levels of free iron oxide and pH the
key factors in determining adsorption capacity.

(Artiola-Fortuny & Fuller 1982).
 
Other physicochemical properties :
Flammability: moderate. 
Combustion with moderate heating.

Toxic combustion products hazardous.

Explosiveness: Stable. 
Vapors form explosive mixtures with air.
 
Photochemical degradation in air :
Photooxidation half-life in air:
16hr - 1.6hr, based upon measured rate data for the vapor phase
reaction with hydroxyl radicals in air (Howard 1991).

In the atmosphere during the daytime 2-cresol reacts pricipally
with photochemically-generated hydroxyl radicals primarily by
ring addition but also by H abstraction with a resulting
half-life of 9.6 hr. 
However in the nighttime especially in
moderately polluted atmospheres where concentrations of O3 and
NO2 are high, reaction with NO3 radicals is a major sink for
2-cresol (half-life 2 min) with the formation of nitrocresols.

Under photochemical smog conditions half-lives have been
measured to be 1-5 hr with nitrocresol formation (Howard 1989).
 
Photochemical degradation in water :
Photo-oxidation: an aqueous solution of cresol (n.s.i.) is
destroyed by photooxidation using visible light as a direct
energy source and methyleneblue as a dye-sensitizer (Sargent & 
Sanks 1974).

Photooxidation half-life in water:
145d - 2.75d, scientific judgement based upon reported reaction
rate constants for OH and RO2 with the phenol class (Howard 
1991).

The photolysis half-life of 4-cresol in pure water by sunlight
is 35 days and it will presumable be similar for the 2-cresol.

Since absorptivity increases with pH from pH 5.1 to 8.9, so may
the photolysis rate (Smith et al. 1978).
 
Half-life in air, days :
0.67  16hr - 1.6hr,
0.07  based upon photooxidation half-life in air.
  Howard 1991
 
Half-life in soil, days :
7d - 1d,
scientific judgement based upon estimated unacclimated aqueous aerobic biodegradation half-life.
  Howard 1991
 
Half-life in water, days :
7d - 1d,
in surface water: scientific judgement based upon estimated unacclimated aqueous aerobic biodegradation half-life,
14  14d - 2d,
in ground water: scientific judgement based upon estimated unacclimated aqueous aerobic biodegradation half-life.
  (Howard 1991)
 
Aerobic degradation in water :
Aerobic half-life:
7d - 1d, scientific judgement based upon unacclimated aerobic 
screening test data (Howard 1991).
 
Anaerobic degradation in water :
Anaerobic half-life:
28d - 4d, scientific judgement based upon unacclimated aqueous 
aerobic biodegradation half-life (Howard 1991).
 
Total degradation in soil :
Decomposition period by a soil microflora: 1 day 
(Verschueren 1983).
 
Ready biodegradability :
Confirmed to biodegradable (Anon. 1987).
 
Other information of degradation :
Degradation of o-cresol:
*-------------------------------------------------------------*
ENVIRONMENT    INIT.CONC   REDOX-     TEMP   DEGRADATION    REF
                  mg/l     COND.       °C        %/day
*-------------------------------------------------------------*
water              20      aerobic     25       99/7         a
sludge         appr. 50    anaerobic   25        0/56        b
sludge         appr. 50    anaerobic   35        0/56        b
soil suspension    10      aerobic     25      100/1         c
*-------------------------------------------------------------*
a) Bunch & Chamber 1967          c) Alexander & Lustigman 1966
b) Horowitz et al. 1982          (Anon 1987b).

Biodegrades at moderate rate but can after aesthetics at very
low concentration levels (Sax 1986).

Inhibition of nitrification in activated sludgeat 11-16 mg/l
(75 % reduction) ( n.s.i.) 
(Verschuren 1983).

Inhibition of degradation of glucose by Pseudomonas fluorescens
at 50 mg/l. 
Inhibition of degradation of glucose by E. coli at
600 mg/l (Bringmann & Kuhn 1960).

Decomposition period by a soil microflora: 1 day (Verschuren
1983).

2-Cresol biodegradas rabidly in screening studies using soil,
sewage, avtivated sludge or municipal wastewater inocula.
acclimation is frequently not necessary. 
It is completely
degraded in river water in 2 and 7 days at 20 °C and 4 °C,
respectively (Howard 1989).

No mineralization was observed when 2-cresol was incubated with
two digester sludge samples for 8 weeks under anaerobic
conditions, nor was there any mineralization in 29 weeks when
it was incubated with anaerobic freshwater sediment (Horowitz 
et al. 1982).
 
Other information of bioaccumulation :
Potential for accumulation positive. 
Chronic toxicant
properties via all routes suggest accumulative effects (Sax
1986).

Using the log octanol/water partition coefficient of 1.95, a
bioconcentration factor of 18 is estimated. 
Therefore 2-cresol
would not be expected to biocontrate significantly in fish
(Lyman et al. 1982).
 
LD50 values to mammals in oral exposure, mg/kg :
121  orl-rat, Lewis & Sweet 1984
344  orl-mus
  --
1350  orl-rat, Sax 1986
  --
800  orl-rbt, Patty 1967
 
LD50 values to mammals in non-oral exposure , mg/kg :
890  skn-rbt, Lewis & Sweet 1984
1100  skn-rat
  --
1782  skn-rbt, mixed cresols, Sax 1986
 
LDLo values to mammals in oral exposure, mg/kg :
940  orl-rbt, Sax 1986
 
LDLo values to mammals in non-oral exposure , mg/kg :
80  ivn-dog, Sax 1986
65  scu-rat
410  scu-mus
55  scu-cat
450  scu-rbt
180  ivn-rbt
360  ipr-gpg
 
TDLo values to mammals in non-oral exposure , mg/kg :
4800  skn-mus, 12W-I, tumorigenic
  Sax 1986
 
Health effects :
Jaundice, dermatitis (Sax 1986).

Direct contact: Dangerous to skin and eyes (Sax 1986).

General sensation: Corrosive to body tissues; toxic by
inhalation, skin absorption, ingestion. 
May cause skin
eruptions. 
Absorption may lead to liver and kidney damage
(Sax 1986).

Acute hazard level: 8 g can be fatal to a man. 
Toxic via all
routes. 
Extremely corrosive irritant and allergen. 
Emits highly
toxic vapors when heated to decomposition. 
Chronic hazard
level: Dermatitis and/or liver and kidney damage (Sax 1986).

Skin and eye irritation data:
skn, rbt, 524 mg, 24 hr, severe;
eye, rbt, 105 mg, severe (Sax 1986).
 
Effects on amphibia :
LC50, 40 mg/l, 48hr, Mexican axolotl (3-4 w after hatching).

LC50, 38 mg/l, 48hr, claved toad (3-4 w after hatching)
(Slooff & Baerselmann 1980).
 
Maximum longterm immission concentration in air for plants,mg/m3 :
0.2  VDI 2306
 
Maximum longterm immission concentration in air for plants,ppm :
0.05  VDI 2306
 
Effects on microorganisms :
LD0, 60 mg/l, E. coli (Verschueren 1983)

Toxicity threshold (cell multiplication inhibition test):
Pseudomonas putida: 33 mg/l
(Bringmann & Kühn 1980a)
 
Effects on wastewater treatment :
940 ppm inhibited 50 % sewage organisms subject to chlorination
and subsequently lower taste thresholds (Sax 1986).
 
LOEC values to algae, mg/l :
6.8  rpd, schr, Microcystis aeruginosa
  Bringmann & Kühn 1976
 
NOEC values to algae, mg/l :
65  rpd, schr, Selenastrum capricornutum
  Slooff et al. 1983
 
LC50 values to crustaceans, mg/l :
16  48hr, Daphnia magna
16  48hr, Daphnia cucullata
9.6  48hr, Daphnia pulex, Canton & Adema
  1978
  --
10  10-100, 48hr, shrimp
100  Sax 1986
  --
23  48hr, Asellus aquaticus, Slooff 1983
21  48hr, Gammarus pulex, Slooff 1983
 
LC50 values to fishes, mg/l :
18.2  96 hr, Pimephales promelas
7.9  96 hr, Salmo gairdneri, DeGraeve et al.
  1980
  --
24 hr, Salmo trutta, Anon. 1973 a
  --
13.4  96 hr, Pimephales promelas
  Pickering & Henderson 1966
  --
18  96hr, Poelicia reticulata
16  96hr, Rutilus rutilus, Jones 1971
  --
24  96hr, Branchydanio rerio
10  48hr, Leuciscus idus, Wellens 1982
  --
13  48hr, Salmo gairdneri
  Slooff et al. 1983
  --
23.5  Tilapia mossambica
  Devi & Sastry 1987
  --
10  10-33, 48hr, plaice
33  Sax 1986
  --
14  96 hr, Pimephales promelas, Geiger et al. 1990
 
EC50 values to fishes, mg/l :
14  96 hr, mbt, Pimephales promelas, Geiger et al. 1990
 
Other information of water organisms :
6 - 40 mg/l, inhibitory, Scenedesmus;
5 - 10 mg/l, inhibitory, Macrocystis pyrifera;
55 mg/l, 1 hr, killed, sunfish;
60 mg/l, killed, minnow;
70 mg/l, 3 hr, killed, roach;
110 mg/l, 5 hr, killed, roach;
10 mg/l, 1 hr, lethal, perch 
(Sax 1986).

Toxicity threshold (cell multiplication inhibition test):
Microcystis aeruginosa        6.8 mg/l  Bringmann & Kühn 1976
Scenedesmus quadricauda        11 mg/l  Bringmann & Kühn 1980a
Entosiphon sulcatum            17 mg/l  Bringmann & Kühn 1980a
Uronema parduczi Chatton-Lwoff 31 mg/l  Bringmann & Kühn 1980b

LC50, 48hr, 165 mg/l, Tubificidae
LC50, 48hr, 34 mg/l, Chironomus gr. thummi
LC50, 48hr, 135 mg/l, Erpobdella octoculata
LC50, 48hr, 160 mg/l, Lymnaea stagnalis
LC50, 48hr, 24 mg/l, Dugesia cf. lugubris
LC50, 48hr, 75 mg/l, Hydra oligactis
LC50, 48hr, 80 mg/l, Corixa punctata
LC50, 48hr, 46 mg/l, Ischura elegans
LC50, 48hr, 10 mg/l, Nemoura cinerea
LC50, 48hr, 50 mg/l, Cloeon dipterum
(Slooff 1983)
 
Other information :
Air pollution: high
(Sax 1986).

Manifacturing source: coal tar refing; petroleum refing;
organic chemical mfg.; wood processing.

Natural sources (water and air): coal, petroleum, constituent
in wood, constituent in natural runoff.

Man caused sources (water and air): automobile exhaust, roadway
runoff, runoff from asphalt, general use of plastics, petroleum
distillates, fuels, perfumes, oils lubricants, metal cleaning
and scouring compounds, laboratory chemical, constituent of
domestic sewage (EPA 1975).

References
2349Alexander, M. & Lustigman, B.K. 1966. Effect of chemical structure on microbial degradation of substituted benzenes. J. Agr. Food Chem. 14: 410 - 413.
59Anon. 1973a. European inland fishery advisory commission working party on water quality criteria for european freshwater fish, Water quality criteria for european freshwater fish. Water Res. 7: 929 - 941.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
2333Anon. 1987b. Nedbrydelighed af miljøfremmede organiske stoffer. Utredningsrapport U1. Lossepladsprojektet.
3088Artiola-Fortuny, J. & Fuller, W. H. 1982. Soil Sci 133: 18 - 26.
3269Boyd, S. A. 1982. Soil Sci 134: 337 - 347.
187Bringmann, G. & Kühn, R. 1976. Vergleichende Befunde der Schadwirkung wassergefährdender Stoffe gegen Bakterien (Pseudomonas putida) und Blaualgen (Microcystis aeruginosa). Gwf-Wasser-Abwasser 117(9).
188Bringmann, G. & Kühn, R. 1980a. Comparison of the toxicity thresholds of water pollutants to bacteria, algae and protozoa in the cell multiplication inhibition test. Water Res. 14: 231 - 241.
189Bringmann, G. & Kühn, R. 1980b. Bestimmung der biologischen Schadwirkung wassergefahrdender Stoffe gegen Protozoen. II. Bakterienfressende Ciliaten, Z. Wasser/Abwasser Forsch. 1: 26 - 31.
2345Bunch, R.L. & Chamber, C.W. 1967. A biodegradability test for organic compounds. J.W.P.C.F. 39: 181- 187.
241Canton, J.H. & Adema, D.M.M. 1978. Reproducibility of short-term and reproduction toxicity experiments with Daphnia magna and comparisons of the sensitivity of Daphnia magna with Daphnia pulex and Daphnia cucullata in short-term experiments. Hydrobiologia 59(2): 135 - 140.
331DeGraeve, G.M. et al. 1980. Toxicity of underground coal gasification condenser water and selected constituents to aquatic biota. Arch. Environ. Contam. Toxicol. 9: 543.
330DeGraeve, G.M., Geiger, D.L., Meyer, J.S. & Bergman, H.L. 1980. Acute and embryo-larval toxicity of phenolic compounds to aquatic biota. Arch. Environ. Contam. Toxicol. 9: 557 - 568.
1926Devi, C.R. & Sastry, C.A. 1987. Pathological changes due to o-cresol, resorcinol and 2,5-xylenol to the brain (optic tectum) of a teleost Saurotherodon mossambicus (Peters). J. Environ. Biol. 8: 307.
415EPA. 1975. Identification of organic compounds in effluents from industrial sources, EPA-560/3-75-002.
3297Geiger, D. L. et al. 1990. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas) Vol 5. Center for Lake Superior Environmental Studies, University of Winsconsin-Superior, Superior, Winconsin, U.S.A. 332.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
2337Horowitz, A., Shelton, D.R., Cornell, C.P. & Tredje, J.M. 1982. Anaerobic degradation of aromatic compounds in sediment and digested sludge. Dev. Ind. Microbial. 23: 435 - 444.
2337Horowitz, A., Shelton, D.R., Cornell, C.P. & Tredje, J.M. 1982. Anaerobic degradation of aromatic compounds in sediment and digested sludge. Dev. Ind. Microbial. 23: 435 - 444.
3047Howard, P. H. 1989. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. I: Large Production and Priority Pollutants. Lewis Publishers, Inc. Chelsea. pp 574.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
675Jones, H.R. 1971. Environmental control in the organic and petrochemical industries. Noyes Data Corporation 1971.
3281Leuenberger, C, et al. 1985. Water Res. 19: 885 - 894.
3280Leuenberger, C. et al. 1985. Environ. Sci Technol. 19: 1053 - 1058.
1589Lewis, R.J. & Sweet, D.V. 1984. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 83-107-4.
2960Lyman, W. J. et al. 1982. Handbook of Chemical Property Estimation Methods. Environmental behavior of organic compounds. McGraw-Hill New York.
1644Patty, F.A. 1967. Industrial hygiene and toxicology. Vol 2. Interscience Publishers.
1129Pickering, Q.H. & Henderson, C. 1966. Acute toxicity of some important petrochemicals to fish. J. Water Pollut. Control Feder. 38: 1419 - 1429.
1973Pilli.A., Carle, D.O., Kline. E., Pickering. Q. & Lazorchak. J. 1988. Effets of pollution on freshwater organisms. JWPCF 60(6): 994 - 1065.
2971Riddick, J. A. et al. 1986. Organic solvents: Physical Properties and Methods of Purification, 4th Edit. New York: J. Wiley & Sons.
3104Sangster, J. 1989. Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data, Vol 18, No. 3: 1111 - 1229.
2670Sargent, J. W. & Sanks, R. L. 1974. Light energized oxidation of organic wastes. JWPCF 46(11).
2147Sax, I. 1986. Hazardous chemicals information annual No. 1. Van Nostrand Reinhold Information Services, New York. 766 s.
1304Slooff, W., Canton, J.H. & Hermens, J.L.M. 1983. Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds. I (sub)acute toxicity tests. - Aquatic toxicology 4: 113 - 128.
1167Slooff, W. & Baerseman, R. 1980. Comparison of the usefulness of the Mexican axolotl (Ambystoma mexicanum) and the clawed toad (Xenopus laevis) in toxicological bioassays. Bull. Environm. Contam. Toxicol. 24: 439 - 443.
1302Slooff, W. 1983. Benthic macroinvertebrates and water quality assessment: some toxicological considerations. Aquat. Toxicol. 4: 73.
3282Smith, J. H. et al. 1978. Environ. Pathways of Selected Chemicals in Freshwater Systems part II Lab. Studies USEPA-600/7-78-074.
3283Southworth, G. R. & Keller, J. L. 1986. Water Air Soil Pollut. 28: 239 - 248.
1599VDI 2306. VDI-Kommission Reinhaltung der Luft. Maximale Immissions-Konzentrationen (MIK). Organische Verbildungen.
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.
1531Wellens, H. 1982. Comparison of the sensitivity of Branchydanio rerio and Leucistus idus by testing the fish toxicity of chemicals and wastewaters. Z. Wasser Abwasser Forsch. (Ger.) 15: 49.
3030Yaws, C., Yang, H-C. & Pan, X. 1991. Henry's law constants for 362 organic compounds in water. Chemical Engineering. November. p 179 - 185.

 
 
© Copyright Environmental Administration