www.ymparisto.fi
 
 
Data bank of environmental chemicals     |     The Finnish Environment Institute (SYKE)
 


20.4.2024

Data bank of environmental properties of chemicals


Chemical
m-cresol
CAS-number :
108-39-4
 
Synonyms :
1-hydroxy-3-methylbenzene
3-cresol
3-hydroksitolueeni
3-hydroxytoluene
3-kresoli
3-methylphenol
3-metyylifenoli
m-hydroxytoluene
m-kresoli
m-kresyylihappo
m-metyylifenoli
 
Sumformula of the chemical :
C7H8O C7H8O
EINECS-number :
2035779
 
State and appearance :
yellowish liquid
 
Odor :
Odor threshold (tentative): average: 0.2 mg/l
                            range: 0.016 - 4.0 mg/l
Taste threshold conc.: 0.002 mg/l
(Verschueren 1983)
 
Molecular weight :
108.15
 
Spesicif gravity (water=1) :
1.038  at 20/4 °C
 
Conversion factor, 1 ppm in air=_mg/m3 :
4.5  mg/m3, Verschueren 1983
 
Conversion factor, 1 mg/m3 in air=_ppm :
0.22  ppm, Verschueren 1983
 
Vapor pressure, mmHg :
0.04  20 °C
0.12  30 °C
76 °C
0.14  at 25 °C, Riddick et al. 1986
 
Water solubility, mg/l :
23500  20 °C
58000  100 °C
23000  at 25 °C, Leuenberger et al. 1985
 
Melting point, °C :
12 
 
Boiling point, °C :
202 
 
Log octanol/water coefficient, log Pow :
1.96  1.96/2.01
2.01  Verschueren 1983
1.98  Sangster 1989
1.96  Hansch & Leo 1985
 
Henry's law constant, Pa x m3/mol :
0.07184  calc. Yaws et al. 1991
0.088  calc. Leuenberger et al. 1985
 
Volatilization :
3-Cresol has a low potential to volatilize from water, having
calculated Henry's Law constant of 8.7x10-7 atm-m3/mol
(Leuenberger et al. 1985).
 
Adsorption/desorption :
The value for Koc measured on Brookstone clay loam soil is 35 
whereas that predicted from the water solubility is 18. 
However 
Koc's for phenols predicted from water solubilities are only 
good for soils with organic carbon contents greater than approx
0.5 %. 
Adsorptivities are greater than predicted for soils with 
low organic carbon content because interactions such as 
H-bonding are dominant (Howard 1989).

There is no adsoption to sodium montmorillonite or sodium 
kaolinite clay between pH 2 and 10 (Luh & Baker 1970).
 
Other physicochemical properties :
Dissociation constant 10.09 (Riddick et al. 1986).
 
Photochemical degradation in air :
Photooxidation half-life in air:
11.3hr - 1.1hr, based upon measured rate data for the apor
phase reaction with hydroxyl radicals in air (Howard 1991).

In the atmosphere during the daytime 3-cresol reacts
principally with photochemically generated hydroxyl radicals
with a resulting half-life 8.0 hr. 
In the nighttime especially
in moderately polluted atmospheres where concentrations of O3
and NO2 are high, rection with NO3 radicals becomes the
predominant sink for 3-cresol (half-life 5 min) with the
formation of nitrocresols. 
Under photochemical smog conditions
3-cresol is the most reactive cresol isomer and a half-life of
2 hr has been reported with the formation of nitrocresols
(Howard 1989).
 
Photochemical degradation in water :
Photooxidation half-life in water:
145d - 2.75d, scientific judgement based upon reproted reaction
rate constants for ·OH and RO2· with the phenol class (Howard
1991).

The photolysis half-life for 3-cresol by sunlight in pure water 
is 35 days; the half-life was a factor of 12 less when humic 
acids are added (Smith et al. 1978).
 
Half-life in air, days :
0.471  11.3hr - 1.1hr,
0.0458  based upon photooxidation half-life in air.
  Howard 1991
 
Half-life in soil, days :
29  29d - 2d,
scientific judgement based upon estimated unacclimated aqueous aerobic biodegradation half-life.
  Howard 1991
 
Half-life in water, days :
29  29d - 2d,
in surface water: scientific judgement based upon estimated unacclimated aqueous aerobic biodegradation half-life.
49  49d - 4d,
in ground water: scientific judgement based upon estimated unacclimated aqueous aerobic biodegradation half-life (low t1/2) and aqueous anaerobic half-life (high t1/2).
  Howard 1991
 
Aerobic degradation in water :
Aerobic half-life:
29d - 2d, scientific judgement based upon unacclimated marine 
water grab sample data (Howard 1991).
 
Anaerobic degradation in water :
Anaerobic half-life:
49d - 15d, scientific judgement based upon anaerobic screening 
test data (Howard 1991).
 
Total degradation in soil :
Decomposition period by a soil microflora: 1 day (Verschueren
1983).

3-Cresol completely degraded in soil in 11 days at an 
application rate of 500 ppm (Huddleston et al. 1986).

Low concentration (39 ppb) of 3-cresol degraded in subsurface 
material taken from an uncontaminated aquifer. 
There was linear 
increase in biodegradation with time over the 160-day 
experiment with a 0.07 % per day average mineralization rate. 

When the concentration of 3-cresol was increased to 788 ppb, no 
mineralization was observed (Aelion et al. 1987).
 
Ready biodegradability :
Confirmed to be biodegradable (Anon. 1987).
 
Other information of degradation :
Degradation of m-cresol:
*--------------------------------------------------------------*
ENVIRONMENT  INIT.CONC   REDOX-      TEMP   DEGRADATION  REF.
             mg/l        COND        °C     %/day
*--------------------------------------------------------------*
sludge      appr. 50     anaerobic   35      92/28       a
sludge      appr. 50     anaerobic   35      90/35       a
soil suspension   10     aerobic     25     100/1        b
*--------------------------------------------------------------*
a) Horowitz et al. 1982    b) Alexander & Lustigman 1966
(Anon. 1987b).

75 % inhibition of nitrification process in non adapted
activated sludge at 11,4 mg/l (Meinck et al. 1970)

Inhibition of degradation of glucose by Pseudomonas fluorescens
at: 40 mg/l.

Inhibition of degradation of glucose by E. coli at: 600 mg/l
(Bringmann & Kühn 1960)

Decomposition period by a soil microflora: 1 day
(Verschueren 1983)

3-Cresol generally biodegrades rapidly in screening studies
using soil, sewage, activated sludge or freshwater inocula.

Acclimation is frenquently not necessary (Howard 1989).

Die-away studies were performed in freshwater, estuarine water
and marine water from sites near Newport NC throughout the
year. 
In estuarine water the half-life ranged from 1 to 6 days.

Rates were faster in freshwater and slower in marine water.

While rates were highest during the summer in fresh and
estuarine  waters, the rate of degradation in marine water was
almost independent of the season (Pfaender & Bartholomew 1982).

When 3-cresol was incubated with two digester sludges under
anaerobic conditions 92 and 90 % mineralization was reported in
4 and 5 weeks, respectively. 
No mineralization occurred in 29
weeks, when it was incubated with anaerobic freshwater
sediment (Horowitz et al. 1982).

No mineralization occurred when 3-cresol was incubated
anaerobically for 40 days at 37 °C with a sludge inoculum
(Fedorak & Hrudey 1984).
 
Other information of bioaccumulation :
The bioconcentration of 3-cresol in fish (golden ide) after 3 
days was 20 indicating that 3-cresol does not bioconcentrate 
significantly in fish. 
After 1 day the bioconcentration in 
algae was found to be 4900 (Freitag et al. 1985).
 
LD50 values to mammals in oral exposure, mg/kg :
242  orl-rat, Lewis & Sweet 1984
828  orl-mus, - " -
  --
2020  orl-rat, Patty 1967
1100  orl-rbt, Patty 1967
 
LD50 values to mammals in non-oral exposure , mg/kg :
620  skn-rat, Lewis & Sweet 1984
 
LD50 values to birds in oral exposure, mg/kg :
113  >113, orl-Agelaius phoeniceus
  Schafer et al. 1983
 
Maximum longterm immission concentration in air for plants,mg/m3 :
0.2  VDI 2306
 
Maximum longterm immission concentration in air for plants,ppm :
0.05  VDI 2306
 
Effects on microorganisms :
LD0, 600 mg/l, E. coli, Verschueren 1983

Toxicity threshold (cell multiplication inhibition test):
Pseudomonas putida: 53 mg/l (Bringmann & Kühn 1980a).
 
EC50 values to microorganism, mg/l :
515  OECD 209, Klecka et al. 1985
 
LOEC values to algae, mg/l :
13  rpd, schr, Microcystis aeruginosa
  Bringmann & Kühn 1976
  --
15  rpd, schr, Scenedesmus quadricauda
  Bringmann & Kühn 1980a
 
LC50 values to fishes, mg/l :
8.9  96 hr, Salmo gairdneri, DeGraeve et al.
  1980
  --
egg, 24 hr, Salmo trutta, Anon 1973 a
  --
13.6  96hr, Lepomis macrochirus, Jones 1971
23  96hr, Rutilus rutilus
  --
15.9  96hr, Branchydanio rerio, Wellens 1982
17  17 - 19, 48hr, Leuciscus idus
19 
 
Other information of water organisms :
Toxicity threshold (cell multiplication inhibition test):
Microcystis aeruginosa         13 mg/l  Bringmann & Kühn 1976
Scenedesmus quadricauda        15 mg/l  Bringmann & Kühn 1980a
Entosiphon sulcatum            31 mg/l  Bringmann & Kühn 1980a
Uronema parduczi Chatton-Lwoff 62 mg/l  Bringmann & Kühn 1980b
 
Other information :
Reduction of amenities:
approx. conc. causing taste in trout and carp: 10 mg/l.
approx. conc. causing taste in fish: 0.2 mg/l
(Jones 1971)

References
3244Aelion, C. M. et al. 1987. Appl. Environ. Microbiol 53: 2212 - 2217.
2349Alexander, M. & Lustigman, B.K. 1966. Effect of chemical structure on microbial degradation of substituted benzenes. J. Agr. Food Chem. 14: 410 - 413.
59Anon. 1973a. European inland fishery advisory commission working party on water quality criteria for european freshwater fish, Water quality criteria for european freshwater fish. Water Res. 7: 929 - 941.
1848Anon. 1987a. The list of the existing chemical substances tested on biodegradability by microorganisms or bioaccumulation in fish body by Chemicals Inspection & Testing Institute. Ministry of International Trade and Industry, MITI. Japan.
2333Anon. 1987b. Nedbrydelighed af miljøfremmede organiske stoffer. Utredningsrapport U1. Lossepladsprojektet.
3269Boyd, S. A. 1982. Soil Sci 134: 337 - 347.
187Bringmann, G. & Kühn, R. 1976. Vergleichende Befunde der Schadwirkung wassergefährdender Stoffe gegen Bakterien (Pseudomonas putida) und Blaualgen (Microcystis aeruginosa). Gwf-Wasser-Abwasser 117(9).
188Bringmann, G. & Kühn, R. 1980a. Comparison of the toxicity thresholds of water pollutants to bacteria, algae and protozoa in the cell multiplication inhibition test. Water Res. 14: 231 - 241.
1856Bringmann, G. & Kühn, R. 1960. Vergleichende toxikologische Befunde an Wasser-Bakterien. GWF-Wasser/Abwasser 6j. 81: 337.
189Bringmann, G. & Kühn, R. 1980b. Bestimmung der biologischen Schadwirkung wassergefahrdender Stoffe gegen Protozoen. II. Bakterienfressende Ciliaten, Z. Wasser/Abwasser Forsch. 1: 26 - 31.
331DeGraeve, G.M. et al. 1980. Toxicity of underground coal gasification condenser water and selected constituents to aquatic biota. Arch. Environ. Contam. Toxicol. 9: 543.
330DeGraeve, G.M., Geiger, D.L., Meyer, J.S. & Bergman, H.L. 1980. Acute and embryo-larval toxicity of phenolic compounds to aquatic biota. Arch. Environ. Contam. Toxicol. 9: 557 - 568.
3284Fedorak, P. M. & Hrudey, S. E. 1984. Water Res. 18: 361 - 367.
3005Freitag, D. et al. 1985. Chesmosphere 14: 1589 - 1616.
2958Hansch, C and Leo, A. J. 1985. Medchem Project Issue No 26. Claremont C.A. Pomona College.
2337Horowitz, A., Shelton, D.R., Cornell, C.P. & Tredje, J.M. 1982. Anaerobic degradation of aromatic compounds in sediment and digested sludge. Dev. Ind. Microbial. 23: 435 - 444.
3047Howard, P. H. 1989. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. I: Large Production and Priority Pollutants. Lewis Publishers, Inc. Chelsea. pp 574.
3120Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M. & Michalenko, E.M., Handbook of Environmental Degradation Rates, 1991. Lewis Publicers, Inc., Chelsea, Michigan, U.S.A., pp. 725.
3285Huddleston, R. L. et al. 1986. Land treatment biological degradation processes pp 41 - 61 in Water Resource Symposium 13.
675Jones, H.R. 1971. Environmental control in the organic and petrochemical industries. Noyes Data Corporation 1971.
2427Klecka, G. M. et al. 1985. Evaluation of the OECD activated sludge respiration inhibition test. Chemosphere 14: 1239.
3281Leuenberger, C, et al. 1985. Water Res. 19: 885 - 894.
1589Lewis, R.J. & Sweet, D.V. 1984. Registry of toxic effects of chemical substances. National Institute for Occupational Safety and Health. No. 83-107-4.
3286Luh, M. D. & Baker, R. A. 1970. Proc. of 25th Industrial Waste Conf. Purdue Univ., Eng. Bull. Ext. Series 25: 534 - 542.
1644Patty, F.A. 1967. Industrial hygiene and toxicology. Vol 2. Interscience Publishers.
3287Pfaender, F. K. & Bartholomew, G. W. 1982. Appl. Environ. Microbiol. 44: 159 - 164.
2971Riddick, J. A. et al. 1986. Organic solvents: Physical Properties and Methods of Purification, 4th Edit. New York: J. Wiley & Sons.
3104Sangster, J. 1989. Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data, Vol 18, No. 3: 1111 - 1229.
1743Schafer , E.W.Jr., Bowles, W.A.Jr., Hurlbut, J. 1983. The acute oral toxicity, repellency and hazard potential of 993 chemicals to one or more species of wild and domestic birds. Arch. Environ. Contam. Toxicol. 12: 355 - 382.
3282Smith, J. H. et al. 1978. Environ. Pathways of Selected Chemicals in Freshwater Systems part II Lab. Studies USEPA-600/7-78-074.
1599VDI 2306. VDI-Kommission Reinhaltung der Luft. Maximale Immissions-Konzentrationen (MIK). Organische Verbildungen.
1468Verschueren, K. 1983. Handbook of environmental data of organic chemicals. Van Nostrand Reinhold Co. Inc., New York. 1310 s.
2413Walker, J. D. 1987. Effects of chemicals on microorganisms. Journal WPCF 59 (6): 614 - 625.
1531Wellens, H. 1982. Comparison of the sensitivity of Branchydanio rerio and Leucistus idus by testing the fish toxicity of chemicals and wastewaters. Z. Wasser Abwasser Forsch. (Ger.) 15: 49.
3030Yaws, C., Yang, H-C. & Pan, X. 1991. Henry's law constants for 362 organic compounds in water. Chemical Engineering. November. p 179 - 185.

 
 
© Copyright Environmental Administration